1、山东省枣庄四中九年级数学3.2.1 圆的对称性教案(2) 北师大版目标1、 经历探索圆的对称性及相关性质,2、 理解圆的对称性及相关性质3、 进一步体会和理解研究几何图形的各种方法教学重点和难点重点:垂径定理及其逆定理 难点:垂径定理及其逆定理教学过程设计一、 从学生原有的认知结构提出问题圆是我们比较熟悉的图形。它是漂亮的图形,这节课,我们研究一下它的性质。二、 师生共同研究形成概念1、 圆的轴对称性 议一议 书本P 89在探索圆是轴对称图形时,大多数学生可能会采用折叠的方法,有的学生也可能用其他方法,只要合理,都应该鼓励圆是轴对称图形,其对称轴是任意一条过圆心的直线2、 圆的几个概念对于和圆
2、有关的这些概念,应让学生借助图形进行理解,并弄清楚它们之间的联系和区别。圆上任意两点间的部分叫做圆弧,简称弧 弧AB记作AB大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧 优弧DCA 劣弧AB连接圆上任意两点的线段叫做弦经过圆心的弦叫做直径 注意直径是弦,但弦不一定是直径;半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧3、 垂径定理 做一做 书本P 90 做一做从此例子得出垂径定理。垂直于弦的直径平分这条弦,并且平分弦所对的弧如图,在O中,直径CD弦AB,垂足为M,(1) 图中相等的线段有 ,相等的劣弧有 ;(2) 若AB = 10,则AM = ,BC = 5,则AC = 。4、 讲解例题
3、例1 如图,AB是O的一条弦,OCAB于点C,OA = 5,AB = 8,求OC的长。5、 垂径定理的逆定理 想一想 书本P 91 想一想鼓励学生独立探索,然后通过同学间的交流,得出结论。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧如图,在O中,直径CD平分弦AB,交AB于点M,(1) 图中直角有 ,相等的劣弧有 ;(2) 若BC = 5,则AC = 。6、 讲解例题例2 如图,AB是O的一条弦,点C为弦AB的中点,OC = 3,AB = 8,求OA的长。例3 如图,两个圆都以点O为圆心,小圆的弦CD与大圆的弦AB在同一条直线上。你认为AC与BD的大小有什么关系?为什么?例4 如图,一条公路的转弯处是一段圆弧(即图中CD,点O是CD的圆心),其中CD = 600m,E为CD上一点,且OECD,垂足为F,EF = 90m。求这段弯路的半径。三、 随堂练习1、 书本 P 93 随堂练习 1、2 练习册 P 45四、 小结垂径定理及其逆定理。五、 作业书本 P 94 习题3.2 1六、 教学后记