资源描述
重庆市万州区丁阳中学八年级数学上册《15.1.3积的乘》教案 人教新课标版
教学目标
1.知识与技能
通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质.
2.过程与方法
经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.
3.情感、态度与价值观
通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.
重、难点与关键
1.重点:积的乘方的运算.
2.难点:积的乘方的推导过程的理解和灵活运用.
3.关键:要突破这个难点,教师应该在引导这个推导过程时,步步深入,层层引导,而不该强硬地死记公式,只有在理解的情况下,才可以对积的乘方的运算性质灵活地应用.
教学方法
采用“探究──交流──合作”的方法,让学生在互动中掌握知识.
教学过程
(一) 回顾旧知识
1. 同底数幂的乘法
2. 幂的乘方
(二) 创设情境,引入新课
1. 问题:已知一个正方体的棱长为2×103cm,你能计算出它的体积是多少吗?
2. 学生分析(略)
3. 提问:
体积应是V=(2×103)3cm3 ,结果是幂的乘方形式吗?底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,请同学们自己探索,发现其中的奥秒.
(三) 自主探究,引出结论
1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?
(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a( )b( )
(2)(ab)3=______=_______=a( )b( )
(3)(ab)n=______=______=a( )b( )(n是正整数)
2.分析过程:
(1)(ab)2 =(ab)·(ab)= (a·a)·(b·b)= a2b2, 【1】
(2)(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)=a3b3;
(3)(ab)n==·=anbn
3.得到结论:
积的乘方:(ab)n=an·bn(n是正整数)
把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积.
4.积的乘方法则可以进行逆运算.即:
an·bn=(ab)n(n为正整数)【2】
an·bn=·──幂的意义
=──乘法交换律、结合律
=(a·b)n ──乘方的意义
三、随堂练习,巩固深化
课本P144练习.
【探研时空】
计算下列各式:
(1)(-)2·(-)3; (2)(a-b)3·(a-b)4;
(3)(-a5)5; (4)(-2xy)4;
(5)(3a2)n; (6)(xy3n)2-[(2x)2] 3;
(7)(x4)6-(x3)8; (8)-p·(-p)4;
(9)(tm)2·t; (10)(a2)3·(a3)2.
四、课堂总结,发展潜能
本节课注重课堂引入,激发学生兴趣,“良好开端等于成功一半”.
1.积的乘方(ab)n=anbn(n是正整数),使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘.
2.在运用幂的运算法则时,注意知识拓展,底数和指数可以是数,也可以是整式,对三个以上因式的积也适用.
3.要注意运算过程,注意每一步依据,还应防止符号上的错误.
4.在建构新的法则时应注意前面学过的法则与新法则的区别和联系.
五、布置作业,专题突破
1.课本P148习题15.1第1、2题.
2.选用目标小练习
3.选做题
2(x3)2·x3-(3x3)3+(5x)2·x7 (3xy2)2+(-4xy3) · (-xy) (-2x3)3·(x2)2
(-x2y)3+7(x2)2·(-x)2·(-y)3 [(m-n)3]p·[(m-n)(m-n)p]5
(0.125)7×88 (0.25)8×410 2m×4m×()m
已知10m=5,10n=6,求102m+3n的值
六、板书设计
15.1.3 积的乘方
积的乘方的乘法法则 例: 练习: 34
积的乘方 把积的每一个因式 (1)(ab)2 3
分别乘方,再把所得的幂相乘. (2)(ab) 4
即(ab)n=anbn(n是正整数) (3)(ab)n ……………….
七、教学反思:
展开阅读全文