资源描述
课题:3.6圆锥的侧面积和全面积
教学目标:1、经历圆锥的侧面积计算公式的探索过程;
2、掌握圆锥的侧面积计算公式,会利用公式进行计算,并会解决实际问题;
3、让学生观察将圆锥的曲面展开在一个平面上的图形。回顾圆锥及其侧面积展开图之间的关系。
教学重点:圆锥侧面积的计算及计算公式
教学难点:圆锥侧面积计算公式的推导过程需要较强的空间想象能力。
教学设计:
[幻灯展示生活中常遇的圆锥形物体,如:铅锤、粮堆、烟囱帽]
前面屏幕上展示的物体都是什么几何体?
在小学我们已学过圆锥,哪位同学能说出圆锥有哪些特征?
答:圆锥是由一个底面和一个侧面围成的,圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆的距离是圆锥的高。
[教师边演示模型,边启发提问]:
1. 给一圆锥,如何找到它的母线?圆锥的母线应具有什么性质?
2. 现在我把这圆锥的侧面沿它的一条母线剪开,展在一个平面上,
这个展开图是什么图形?
3.圆锥展示图——扇形的弧长l等于圆锥底面圆的什么?
4.扇形的半径其实是圆锥的什么线段?
[扇形的弧长是底面圆的周长,即 ,扇形的半径。就是圆锥的母线]
由于 ,圆锥半径已知则展开图扇形的弧长已知,圆锥母线已知则展开图
扇形的半径已知,因此展开图扇形的面积可求,而这个扇形的面积实质就是圆锥的侧面积,因此圆锥的侧面积也就可求.当然展开图扇形的圆心角也可求.
例1: 圆锥形的烟囱帽的底面直径是80cm,母线长50cm,
计算烟囱帽侧面积.(取3.14,结果保留2个有效数字)
分析:此题直接根据公式,注意最后的答案要根据预定的精确度,用科学记数法写成含两个有效数字的表示形式)
练习:
1.如果圆锥底面半径为4cm,它的侧面积为 ,那么圆锥的母线长为_________.
2.圆锥的底面半径为2 cm,高为cm,则这个圆锥表面积_____________
3一个扇形,半径为30cm,圆心角为120度,用它做成一个圆锥的侧面,那么这个
圆锥的底面半径为_________________
4.圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图扇形的圆心角是__________
例2、已知一个圆锥的轴截面△ABC是等边三角形,它的表面积为75cm2,求这个圆锥的底面半径和母线的长。
分析:求有关底面半径、母线长、高往往要在直角三角形中
利用勾股定理求得,但此题中只知道表面积所以考虑用方程的思想。
练习:课本作业题的1、2、3
小结:请同学们回顾一下,本堂课我们学了些什么知识?
展开阅读全文