资源描述
18.2.5 特殊的平行四边形
一、教学目标
(1)掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算;
(2)理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力。
二、课时安排
1课时
三、教学重点
正方形的性质和判定
四、教学难点
正方形与平行四边形、菱形、矩形的区别和联系
五、教学过程
(一)新课导入
鞋匠们钉鞋时常用的铁钉的横截面的形状,不像普通铁钉那样是圆的,而呈正方形,你们知道其中的原因吗?
你提的问题十分有趣,为什么是正方形而不是圆形,这是正方形独特的性质所起的作用,我们只要再进一步深入接触正方形就会知道其中的道理
(二)讲授新课
做一做:用一张长方形的纸片(如图所示)折出一个正方形.
学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?
正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:
(1)有一组邻边相等的平行四边形 (菱形)
(2)有一个角是直角的平行四边形 (矩形)
正方形有什么性质?
由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形。
正方形的判定:有一组邻边相等的矩形是正方形
有一个角是直角的菱形是正方形
对角线相等且相互垂直平分的四边形。
例题分析:例1(教材P58的例5) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.
已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).
求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.
证明:∵ 四边形ABCD是正方形,
∴ AC=BD, AC⊥BD,
AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).
∴ △ABO、△BCO、△CDO、△DAO都是等腰直角三角形,
并且 △ABO ≌△BCO≌△CDO≌△DAO.
例2 (补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F.
求证:OE=OF.
分析:要证明OE=OF,只需证明△AEO≌△DFO,由于正方形的对角线垂直平分且相等,可以得到∠AOE=∠DOF=90°,AO=DO,再由同角或等角的余角相等可以得到∠EAO=∠FDO,根据ASA可以得到这两个三角形全等,故结论可得
证明:∵ 四边形ABCD是正方形,
∴ ∠AOE=∠DOF=90°,AO=DO(正方形的对角线垂直平分且相等).
又 DG⊥AE,
∴ ∠EAO+∠AEO=∠EDG+∠AEO=90°.
∴ ∠EAO=∠FDO.
∴ △AEO ≌△DFO.
∴ OE=OF.
例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.
求证:四边形PQMN是正方形.
证明:∵ PN⊥l1,QM⊥l1,
∴ PN∥QM,∠PNM=90°.
∵ PQ∥NM,
∴ 四边形PQMN是矩形.
∵ 四边形ABCD是正方形
∴ ∠BAD=∠ADC=90°,AB=AD=DC(正方形的四条边都相等,四个角都是直角).
∴ ∠1+∠2=90°.
又 ∠3+∠2=90°, ∴ ∠1=∠3.
∴ △ABM≌△DAN.
∴ AM=DN. 同理 AN=DP.
∴ AM+AN=DN+DP
即 MN=PN.
∴ 四边形PQMN是正方形(有一组邻边相等的矩形是正方形).
(三)重难点精讲
菱形的判定定理
(四)归纳小结
菱形判定定理:1、对角线相互垂直的平行四边形是菱形;
2、四条边都相等的四边形是菱形
(五)随堂检测
1、根据下列条件,能判定平行四边形ABCD是矩形的是( )
A.AB=CD,AD=BC B.AB=BC
C.AC=BD D.AB∥CD,AD∥BC
2、检查一个门框是否为矩形,下列方法中正确的是( )
A.测量两条对角线,是否相等
B.测量两条对角线,是否互相平分
C.测量门框的三个角,是否都是直角
D.测量两条对角线,是否互相垂直
3、四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,需要添加的条件是( )
A.AB=CD B.AC=BD C.AB=BC D.AC⊥BD
4、木工周师傅计划做一个长方形桌面,实际测量得到桌面的长为80cm,宽为60cm,对角线为120cm,这个桌面 .(填“合格”或“不合格”)
5、已知四边形ABCD中,AB=CD,BC=DA,对角线AC、BD交于点O.M是四边形ABCD外的一点,AM⊥MC,BM⊥MD.试问:四边形ABCD是什么四边形,并证明你的结论
六、板书设计
18.2.5特殊的平行四边形
概念 例题 练习
七、作业布置
1.家庭作业:完成本节课的同步练习;
2.预习作业:完成下一节课导学案中的预习案
八、教学反思
展开阅读全文