收藏 分销(赏)

九年级中考数学第7课时公式法(二)教案全国通用.doc

上传人:s4****5z 文档编号:7629529 上传时间:2025-01-10 格式:DOC 页数:3 大小:21.50KB 下载积分:10 金币
下载 相关 举报
九年级中考数学第7课时公式法(二)教案全国通用.doc_第1页
第1页 / 共3页
九年级中考数学第7课时公式法(二)教案全国通用.doc_第2页
第2页 / 共3页


点击查看更多>>
资源描述
第7课时 公式法(二) 教学目标 1、会熟练运用求根公式解一元二次方程。 2、了解b2-4ac的值与一元二次方程解的情况的关系。 3、会用适当的方法解一元二次方程。 4、通过训练,提高学生运算的正确率,养成良好的运算习惯。 重点难点 重点:熟练地运用公式法解一元二次方程。 难点:选用适当的方法解一元二次方程。 教学过程 (一)复习引入 1、一元二次方程的求根公式是什么?其成立的条件是什么? 2、引导学生完成P.17例11填空,并让学生思考:此方程可以直接用因式分解法求解吗?试一试。 (二)探究新知 1、让学生观察课本P.16-P.17例10,例11,并思考问题:b2-4ac的值与一元二次方程ax2+bx+c=0的解的情况有什么关系?引导学生归纳:由例10知,当b2-4ac>0时,一元二次方程有两个不相等的实数根;由例11知,当b2-4ac=0时,方程有两个相等的实数根。 2、让学生观察方程(x+ )2- =0,当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)有实数解吗?试讨论方程x2+x+1=0有没有实数解? 通过对此问题的讨论让学生明确:当b2-4ac<0时,一元二次方程没有实数解。所以在运用公式法解一元二次方程时,先要计算b2-4ac的值,当b2-4ac≥0时,可以用公式法求解;当b2-4ac<0时,方程无实数解,就不必再代入公式计算了。 3、谈一谈:我们已学了哪些解一元二次方程的方法?怎样选择适当的方法解一元二次方程? 让学生展开讨论,教师引导学生归纳:我们已学了因式分解法、直接开平方法、配方法和公式法四种解一元二次方程的方法。在这些解法中,公式法是通法,即能解任何一个一元二次方程,但对某些特殊形式的一元二次方程,用因式分解法或直接开平方法较简便,配方法也是解一元二次方程的通法,但不如公式法简便,在解一元二次方程时,实际上很少用。 (三)应用新知 1、不解方程判定下列方程的根的情况。 (1)4y+2y2-3=0; (2)x2+ =3x; (3) x2-6x+21=0 提醒学生:在运用b2-4ac的值判定一元二次方程根的情况时,先要将一元二次方程化为一般形式,从而才能正确地确定a,b,c的值。 [解] (1) 原方程可化为2y2+4y-3=0, 因为b2-4ac=42-4×2×(-3)=40>0, 所以原方程有两个不相等的实数根。 (2) 原方程可化为x2-3x+ =0, 因为b2-4ac=(-3)2-4×1× =0, 所以原方程有两个相等的实数根。 (3) 因为b2-4ac=(-6)2-4× ×21=-6<0,所以原方程无实数根。 2、课本P.19习题1.2,B组1(1),(3),(5),(7)。 注意:选用适当的方法解一元二次方程。 (四)课堂小结 1、举例证明怎样运用适当的方法解一元二次方程。 2、用公式法解一元二次方程为什么要先算b2-4ac的值?怎样由b2-4ac的值判定一元二次方程根的情况? 3、一元二次方程的四种解法各不相同,可用于不同形式的方程;但又相互紧密联系,都体现了“降次”的转化思想,即把一元二次方程转化为一元一次方程求解。 (五)思考与拓展 已知关于x的方程: x2-(m-2)x+m2=0。 (1) 有两个不相等的实数根,求m的范围; (2) 有两个相等的实数根,求m的值; (3) 无实数根,求m的范围. [解] b2-4ac=[-(m-2)]2-4× ×m2=-4m+4, (1) 因为原方程有两个不相等的实数根,所以-4m+4>0,即m<1。 (2) 因为原方程有两个相等的实数根,所以-4m+4=0,即m=1。 (3) 因为原方程无实数根,所以-4m+4<0,即m>1。 布置作业 课本习题1.2中A组第5题,选做B组第1题的(2)(4)(6)(8),第4题。 教学后记:
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服