资源描述
教学内容
27.2.3 二次函数的图象与性质
本节共需7课时
本课为第3课时
主备人:佘中林
教学目标
会画出这类函数的图象,通过比较,了解这类函数的性质..
教学重点
通过画图得出二次函数性质
教学难点
识图能力的培养
教具准备
投影仪,胶片.
课型
新授课
教学过程
初 备
统 复 备
情境导入
我们已经了解到,函数的图象,可以由函数的图象上下平移所得,那么函数的图象,是否也可以由函数平移而得呢?画图试一试,你能从中发现什么规律吗?
实践与
探索1
例1.在同一直角坐标系中,画出下列函数的图象.
, ,,并指出它们的开口方向、对称轴和顶点坐标.
解 列表.
x
…
-3
-2
-1
0
1
2
3
…
…
2
0
2
…
…
0
2
8
…
…
8
2
0
…
描点、连线,画出这三个函数的图象,如图26.2.5所示.
它们的开口方向都向上;对称轴分别是y轴、直线x= -2和直线x=2;顶点坐标分别是
(0,0),(-2,0),(2,0).
探索 抛物线和抛物线分别是由抛物线向左、向右平移两个单位得到的.如果要得到抛物线,应将抛物线作怎样的平移?
实践与
探索2
1.画图填空:抛物线的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线向 平移 个单位得到的.
2.在同一直角坐标系中,画出下列函数的图象.
, ,,并指出它们的开口方向、对称轴和顶点坐标.
小结
与作业
回顾与反思 :
1、二次函数与图像之间的关系。
2、对于抛物线,当x 时,函数值y随x的增大而减小;当x 时,函数值y随x的增大而增大;当x 时,函数取得最 值,最 值y= .
课堂作业
1.不画出图象,请你说明抛物线与之间的关系.
2.将抛物线向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点
(1,3),求的值.
家庭作业:
教学后记
展开阅读全文