1、6.2 提取公因式法相关以往知识:_教学内容和方法:_个性化教学思路及改进建议:_【教学目标】一、知识和技能1、在具体情境中认识公因式2、通过对具体问题的分析及逆用分配律,使学生理解提取公因式法并能熟练地运用提取公因式法分解因式 二、过程和方法1、树立学生“化零为整”、“化归”的数学思想,培养学生完整地、辨证地看问题的思想。2、树立学生全面分析问题,认识问题的思想,提高学生的观察能力,分析问题及逆向思想能力。三、情感、态度和价值观在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数学的探索性。【教学重点】掌握公因式的概念,会使用提取公因式法进行因式分解,理解添括号法则。【
2、教学难点】正确地找出公因式【教学过程】一、创设情境,提出问题如图81,一块菜园由两个长方形组成,这些长方形的长分别是3.8m,6.2m,宽都是3.7 m,如何计算这块菜园的面积呢? 列式:3.73.8+3.76.2 (学生思考后列式)有简便算法吗? =3.7(3.8+6.2) =3.710=37(m2) 3.83.73.7 6.2 图8-1在这一过程中,把3.7换成m,3.8换成a,6.2换成b,于是有:mamb =m(ab)_利用整式乘法验证: m(ab)=mamb可能有学生会提出把两个小的长方形补成一个大的长方形,那就更好,或其他的方法,教师都应该及时肯定学生思维中的闪光点.二、观察分析,
3、探究新知 让学生观察多项式:ma+mb (让学生说出其特点:都有m,含有两种运算乘法、加法;然后教师规范其特点,从而引出新知。) 各项都含有一个公共的因式m,我们把因式m叫做这个多项式各项的公因式。 注意:公因式是一个多项式中每一项都含有的相同的因式 。 又如:b是多项式ab-b2各项的公因式2xy是多项式4x2y-6xy2z各项的公因式让学生说出公因式,学生可能会说是2或者是 x 、 y、2x、2y、2xy等,最后一起确定公因式2xy,让学生初步体会到确定公因式的方法。 三、独立练习,巩固新知 指出下列各多项式中各项的公因式(以抢答的形式) ax+ay-a (a) 5x2y3-10x2y (
4、5x2y) 24abc-9a2b2 (3ab) m2n+mn2 (mn) x(x-y)2-y(x-y) (x-y) 说明:本活动也可以改为寻找公因式游戏如:(根据提供的多项式和整式,寻找出这个多项式的公因式.) ax+ay-a 5x2y3-10x2y 24abc-9a2b2 m2n+mn2 x(x-y)2-y(x-y) a, x, y 5xy,5x2y3,5x2y 3abc,9ab,3ab mn,m2n,mn2 x(x-y),y(x-y),(x-y) 游戏规则:准备好写有整式和多项式的纸牌,学生分为四组,每组选四个同学游戏,其中3个同学举一组题中的整式牌,第四个根据组员建议寻找出题中的公因式,
5、并说明理由。 显然由定义可知,提取公因式法的关键是如何正确地寻找确定公因式的方法:(可以由学生讨论总结,然后教师进行归纳)公因式的系数应取各项系数的最大公约数(当系数是整数时) 字母取各项的相同字母,且各字母的指数取最低次幂 根据分配律,可得m(a+b)=ma+mb逆变形,使得到ma+mb的因式分解形式:ma+mb=m(a+b) 这说明多项式ma+mb各项都含有的公因式可提到括号外面,将多项式ma+mb写成m(a+b)的形式,这种分解因式的方法叫做提取公因式法。 定义:一般地,如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行分解的方法叫做提取公因式法。_四、例题教学,运用新知例1
6、把3pq3+15p3q分解因式 通过上面的练习,学生会比较容易地找出公因式,所以这一步还是让学生来操作。然后在黑板上正确规范地书写提取公因式法的步骤。事后总结出提取公因式的一般步骤分两步:第一步:找出公因式;第二步:提取公因式 解:3pq3+15p3q=3pqq2+3pq5p2=3pq(q2+5p2) 让学生口答:把2x3+6x2分解因式说明:应特别强调确定公因式的两个条件,以免漏取. 刚开始讲,最好把公因式单独写出。以显提醒强调提公因式强调因式分解课堂练习:P156T1例2 把4x2-8ax+2x分解因式(让学生做,教师下去观察并选择有代表性的解答。)学生可能出现的解答:4x2-8ax+2x
7、=x(4x-8a+2)4x2-8ax+2x=2(2x2-4ax+x)4x2-8ax+2x=2x(2x-4a) 4x2-8ax+2x=2x(2x-2a+1)4x2-8ax+2x=2x(2x-8ax+2x) 教师出示学生的解答,可先让学生自行点评,找出分解因式的错误,而且这些错误都是以后学生练习中的常犯错误,接着由教师总结。这样做比教师直接给出可能会更有效。 分析:找出公因式2x,强调多项式中2x=2x1 解:4x2-8ax+2x=2x2x-2x4a+2x1=2x(2x-4a+1)说明:当多项式的某一项恰好是公因式时,这一项应看成它与1的乘积,提公因式后剩下的应是1。1作为项的系数通常可省略,但如
8、果单独成一项时,它在因式分解时不能漏项。这类题常有学生犯下面的错误:4x2-8ax+2x=2x(2x-4a)注意:提公因式后的项数应与原多项式的项数一样,这样可检查是否漏项。例3 把-3ab+6abx-9aby分解因式 学生可能会指出字母的个数不同(只要学生说得合理,教师应及时给予肯定与鼓励)他们很快就会发现第一项的系数是“-”的,那么如何转化呢?应先把它转化成前面的情形,便可以因式分解了,所以应先提负号转化,然后再提公因式,提“-”号时,教师可适当地引出添括号法则,可谓解决“燃尾之急”。添括号法则:括号前面是“+”号,括到括号里的各项都不变号;括号前面是“-”号,括到括号里的各项都要变号。课
9、堂练习:P156T 2【巩固添括号法则】解:-3ab+6abx-9aby=-(3ab-6abx+9aby)=-3ab(1-2x+3y)说明:通过此例可看出应用提取公因式法分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则要提出负因数,此时一定要把各项变号。由此总结出提取公因式法的一般步骤。见P155_瞬间灵感或困惑:_课堂练习:P156T3例4 探索: 2(a-b)2-a+b能分解因式吗?还是把问题先交给学生进行小组讨论(四人一小组),鼓励学生进行交流探索。可能有学生会提出好象没有公因式?此时教师可以适当地点拨一下。比如可降低难度改为:2(a-b)2-(a-b),然后启发学生如何转化
10、?从而解决问题。解:2(a-b)2-a+b= 2(a-b)2-(a-b)=(a-b)2(a-b)-1=(a-b)(2a-2b-1)然后可追加一问:2(a-b)2-(b-a)3呢?让学生积极思考,讨论回答。注:n 为偶数 (a-b)n=(b-a)n n 为奇数 (a-b)n= -(b-a)n指出:我们知道代数式里的字母可以表示一个数、一个单项式、一个多项式。此多项式的公因式不明显,但仔细观察可发现,利用添括号法则把-a+b可变形成-(a+b),若把(a-b)看作m,原多项式就可以提取公因式a-b。五、强化训练,掌握新知 把下列各式分解因式 2ax+2ay x2y-xy2 a3+2a2-a 2mn-6m2n2+14m3n3 -ab2c+2a2b-5ac2 x(a+b)-y(a+b) a(x-a)+b(a-x)-c(x-a)六、变式训练,扩展新知A组:将下列各式分解因式 3(a-b)2-6a+6b -0.01x3y+o.2x2yz2 利用因式分解计算223.145+533.145+31.452.5B组: 分解因式xa-xa-1+xa-2 七、整理知识,形成结构 同学们,今天这节课你学会了什么? 在学习过程中你有哪些收获?还有什么疑问? 八、布置作业:作业本(2)6.2 课本P157板书设计