1、角平分线教学目标:1知识目标:(1)证明与角的平分线的性质定理和判定定理相关的结论(2)角平分线的性质定理和判定定理的灵活运用2能力目标:(1)进一步发展学生的推理证明意识和能力(2)培养学生将文字语言转化为符号语言、图形语言的能力(3)提高综合运用数学知识和方法解决问题的能力3情感与价值观要求能积极参与数学学习活动,对数学有好奇心和求知欲在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心4教学重点、难点重点三角形三个内角的平分线的性质综合运用角平分线的判定和性质定理,解决几何中的问题难点角平分线的性质定理和判定定理的综合应用二、教学过程分析本节课设计了五个教学环节:第一环节:复习回顾
2、,设置情境问题,搭建探究平台;第二环节:展示思维过程,构建探究平台;第三环节:例题讲解;第四环节:课时小结;第五环节:课后作业。第一环节:复习巩固,创设情境问题,搭建探究平台1、 提问 :角平分线的性质定理及其逆定理文字语言?根据图形用几何语言表述?2、生活中的数学问题:如图,黄岛区海青镇要在S 区建一个海青茶馆P,让更多的人品尝海青茶,要求:使它到 两条高速公路的距离相等,离两条公路交叉处500 m,请你帮忙设计一下,这个茶馆P 应建于何处(在图上 标出它的位置,比例尺为1:20 000)? 问题1:在问题1中,在S 区建茶馆P,使它到两条公路的距离相等(1) 这个茶馆P 应建于何处?这样的
3、茶馆可建多少个?(2) 若茶馆P 离两条公路交叉处500 m(在图上标出它的位置,比例尺为1:20 000),这个茶馆应建于何处?教师引领学生进入实际问题情景中,利用生活中的数学问题既生动展示问题,同时又通过图片让学生身临其境般感受生活。学生动手画图,猜测并说出观察到的结论。引导学生了解角的平分线有很多未知的性质需我们来解开,并板书课题。第二环节:放开手脚,折一折请同学们拿出准备好一个三角形纸片,分别折出每个角的角平分线,观察这三条角平分线,你发现了什么?小组内交流你们的发现。猜想:“三角形的三个内角的角平分线交于一点” 第三环节:展示思维过程,构建探究平台已知:如图,设ABC的角平分线BM、
4、CN相交于点P,证明:P点在BAC的角平分线上证明:过P点作PDAB,PFAC,PEBC,其中D、E、F是垂足BM是ABC的角平分线,点P在BM上,PD=PE(角平分线上的点到这个角的两边的距离相等)同理:PE=PFPD=PF点P在BAC的平分线上(在一个角的内部,且到角两边距离相等的点,在这个角的平分线上)ABC的三条角平分线相交于点P在证明过程中,我们除证明了三角形的三条角平分线相交于一点外,还有什么“附带”的成果呢?(PD=PE=PF,即这个交点到三角形三边的距离相等)于是我们得出了有关三角形的三条角平分线的结论,即定理三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等下面我通
5、过列表来比较三角形三边的垂直平分线和三条角平分线的性质定理三边垂直平分线三条角平分线三角形锐角三角形交于三角形内一点交于三角形内一点钝角三角形交于三角形外一点直角三角形交于斜边的中点交点性质到三角形三个顶点的距离相等到三角形三边的距离相等问题2如图:直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?你如何发现的?要求学生思考、交流。实况如下:生有一处在三条公路的交点A、B、C组成的ABC三条角平分线的交点处因为三角形三条角平分线交于一点,且这一点到三边的距离相等而现在要建的货物中转站要求它到三条公路的距离相等这一点刚好符合生我找
6、到四处(同学们很吃惊)除了刚才同学找到的三角形ABC内部的一点外,我认为在三角形外部还有三点作ACB、ABC外角的平分线交于点P1(如下图所示),我们利用角平分线的性质定理和判定定理,可知点P1在CAB的角平分线上,且到l1、l2、l3的距离相等同理还有BAC、BCA的外角的角平分线的交点P3;因此满足条件共4个,分别是P、P1、P2、P3教师讲评。第三环节:例题讲解 例1如图,在ABC中AC=BC,C=90,AD是ABC的角平分线,DEAB,垂足为E(1)已知CD=4 cm,求AC的长;(2)求证:AB=AC+CD分析:本例需要运用前面所学的多个定理,而且将计算和证明融合在一起,目的是使学生
7、进一步理解、掌握这些知识和方法,并能综合运用它们解决问题第(1)问中,求AC的长,需求出BC的长,而BC=CD+DB,CD=4 cIn,而BD在等腰直角三角形DBE中,根据角平分线的性质,DE=CD=4cm,再根据勾股定理便可求出DB的长第(2)问中,求证AB=AC+CD这是我们第一次遇到这种形式的证明,利用转化的思想AB=AE+BE,所以需证AC=AE,CD=BE(1)解:AD是ABC的角平分线,C=90,DEABDE=CD=4cm(角平分线上的点到这个角两边的距离相等)AC=BC B=BAC(等边对等角)C=90,B=90=45BDE=904545BE=DE(等角对等边)在等腰直角三角形B
8、DE中BD=2DE2.=4 2 cm(勾股定理),AC=BC=CD+BD=(4+42)cm(2)证明:由(1)的求解过程可知,RtACDRtAED(HL定理)AC=AEBE=DE=CD,AB=AE+BE=AC+CD例2已知:如图,P是么AOB平分线上的一点,PCOA,PDOB,垂足分别为C、D求证:(1)OC=OD;(2)OP是CD的垂直平分线证明:(1)P是AOB角平分线上的一点,PCOA,PDOB,PC=PD(角平分线上的点到角两边的距离相等)在RtOPC和RtOPD中,OP=OP,PC=PD,RtOPCRtOPD(HL定理)OC=OD(全等三角形对应边相等)(2)又OP是AOB的角平分线,OP是CD的垂直平分线(等腰三角形“三线合一”定理)思考:图中还有哪些相等的线段和角呢?第四环节:课时小结(1)本节课学习了哪些内容?(2)应用角的平分线时解决问题时,常作的辅助线是什么? (3)经过本节课的学习,你“悟到 ”什么?本节课我们利用角平分线的性质和判定定理证明了三角形三条角平分线交于一点,且这一点到三角形各边的距离相等并综合运用我们前面学过的性质定理等解决了几何中的计算和证明问题第五环节:课后作业课本32页2、3题