1、3 线段的垂直平分线一、教学目标1.知识与技能(1)要求学生掌握线段垂直平分线的性质定理及判定定理,能够利用这两个定理解决一些问题;(2)能够证明线段垂直平分线的性质定理及判定定理.2.过程与方法(1)经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力;(2)体验解决问题策略的多样性,发展实践能力和创新精神;(3)学会与人合作,并能与他人交流思维的过程和结果3.情感态度及价值观(1)积极参与数学学习活动,对数学有好奇心和求知欲;(2)在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.二、教学重点、难点重点:能够证明线段的垂直平分线的性质定理、判定定理及其相关结论难点:(1
2、)写出线段垂直平分线的性质定理的逆命题并证明它(2)用尺规作线段垂直平分线三、教具准备教师准备:课件.学生准备:练习本.四、教学过程1创设现实情境,引入新课教师用多媒体演示:如图3-1,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置? 图3-1生码头应建在线段AB的垂直平分线与在A,B一侧的河岸边的交点上师同学们认同他的看法吗?生认同师认为对的说说你的理由是什么呢?生(回忆定理)我们以前曾学过线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点的距离相等所以在这个问题中,要求在“A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相
3、等”利用此性质就能完成师这位同学分析得很好,我们在七年级时研究过线段的性质,线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴我们曾经像这样利用折纸的方法得到“线段垂直平分线上的点到线段两个端点的距离相等”这一简单事实,但是用这种观察的方式是很难说服别人的,你能用公理或学过的定理来证明这一结论吗?教师演示线段垂直平分线的性质:定理:线段垂直平分线上的点到线段两个端点的距离相等2讲述新课【第一部分】线段垂直平分线的性质定理师我们得到了线段垂直平分线的性质定理,大家知道这是不够的,还必须利用公理及已学过的定理推理、证明它那么如何证明呢?师(引导)问题一:要证“线段垂直平分线上的点到线段两个端
4、点的距离相等”,可线段垂直平分线上的点有无数多个,需一个一个依次证明吗?(强调)我们只需在线段垂直平分线上任取一点代表即可,因为线段垂直平分线上的点都具有相同的性质(开始让学生有这样的数学思想)你能根据定理画图并写出已知和求证吗?谁能帮老师分析一下证明思路?生(思考回答)师生共析已知:如图3-2,直线MNAB,垂足是C,且ACBC,P是MN上的点求证:PAPB 图3-2分析:要想证明PAPB,可以考虑包含这两条线段的两个三角形是否全等证明:MNAB,PCAPCB90ACBC,PCPC,PCA PCB(SAS)PAPB(全等三角形的对应边相等)【第二部分】线段垂直平分线的判定定理教师用多媒体完整
5、演示证明过程同时,用多媒体呈现:想一想:你能写出上面这个定理的逆命题吗?它是真命题吗?师(引导、并提问两学生)问题二:这个命题是否属于“如果,那么”的形式?你能分析原命题的条件和结论,将原命题写成“如果,那么”的形式吗?最后再把它的逆命题写出来.生A(思考分析)原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点到线段两个端点的距离相等”师有了这位同学的精彩分析,逆命题就很容易写出来生B如果有一个点到线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上师很好,能否把它描述得更简捷呢?生B到线段两个端点的距离相等的点在这条线段的垂直平分线上师非常好!当我们写出逆命题时,就想到判
6、断它的真假若为真,则需证明它;若为假,则需用反例说明请同学们类比原命题自己独立写出已知、求证(给学生思考时间)已知:线段AB,点P是平面内一点且PAPB求证:点P在AB的垂直平分线上(分组讨论,鼓励学生多想证明方法,并派代表上黑板写写本组的证明过程)师看学生的具体情况,做适当的引导证明:(证法一)过点P作已知线段AB的垂线PC,如图3-3PAPB,PCPC,RtPAC RtPBC(HL)ACBC,即点P在AB的垂直平分线上 图3-3(证法二)取AB的中点C,过PC作直线,如图3-4APBP,PCPC,ACCB,APCBPC(SSS)PCAPCB(全等三角形的对应角相等)又PCAPCB180,P
7、CAPCB90,即PCAB点P在AB的垂直平分线上 图3-4(证法三)过P点作APB的角平分线,如图3-5APBP,12,PCPC,APCBPC(SAS)ACDC,PCAPCB(全等三角形的对应角相等,对应边相等)又PCAPCB180,PCAPCB90点P在线段AB的垂直平分线上. 图3-5师先肯定学生的思考,再对证明过程严谨的小组加以表扬,不足的加以点评和纠正师从同学们的推理证明过程可知线段垂直平分线的性质定理的逆命题是真命题,我们把它称为线段垂直平分线的判定定理【第三部分】做一做:用尺规作线段的垂直平分线(教师多媒体演示)师(边演示图边讲讲作图有关的数学史)大家知道这些图是用什么工具作出来
8、的吗?(资料:古希腊以来,平面几何中的作图工具习惯上限用直尺和圆规两种,其中,直尺假定直而且长,但上面无任何刻度,圆规则假定其两腿足够长并能开闭自如作图工具的这种限制,最先大概是恩诺皮德斯(Oenopides,约公元前465年)提出的,以后又经过柏拉图(Plato,公元前427347)大力提倡柏拉图非常重视数学,强调学习几何对训练逻辑思维能力的特殊作用,主张对作图工具要有限制,反对使用其他机械工具作图之后,欧几里得(Euclid,约公元前330275)又把它总结在几何原本一书中,于是,限用尺规进行作图就成为古希腊几何学的金科玉律)师其实同学们也能用圆规、直尺画出优美的图形,下面咱们就一起来学用
9、尺规作线段的垂直平分线(分析:要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两个端点距离相等的点在这条线段的垂直平分线上,那么我们必须找到两个到线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线)类似于证明题要写出已知、求证和证明,作图题也要根据条件写出已知、求作和作法,下面我们一同来写出已知、求作、作法,体会作法中每一步的依据教师示范,请学生同时练习已知:线段AB,如图3-6. 图3-6求作:线段AB的垂直平分线作法:分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点C和D作直线CD,如图3-7.直线CD就是线段AB的垂直平分线 图3-7师根据上面作法中的步骤,请
10、你说明CD为什么是AB的垂直平分线吗?请与同伴进行交流生从作法的第一步可知:ACBC,ADBDC、D都在AB的垂直平分线上(线段垂直平分线的判定定理)CD就是线段AB的垂直平分线(两点确定一条直线)师我们曾用刻度尺找线段的中点,当我们学习了线段垂直平分线的作法时,一旦垂直平分线作出,线段与线段垂直平分线的交点就是线段AB的中点,所以我们也用这种方法作线段的中点3. 练习:(1)已知直线 l 和 l 上一点 P,用尺规作 l 的垂线,使它经过点 P.学生先独立思考完成,然后交流:说出做法并解释作图的理由.(2)拓展:如果点 P 是直线 l 外一点,那么怎样用尺规作 l 的垂线,使它经过点 P 呢?说说你的作法,并与同伴交流.4.课堂小结:本节课你都掌握了哪些内容?5.教学反思