1、山东省文登市九年级数学上册一元二次方程的根的判别式教案 人教新课标版一、教学目的1使学生理解并掌握一元二次方程的根的判别式2使学生掌握不解方程,运用判别式判断一元二次方程根的情况二、教学重点、难点重点:一元二次方程根的判别式的应用难点:一元二次方程根的判别式的推导三、教学过程复习提问1一元二次方程的一般形式及其根的判别式是什么?2用公式法求出下列方程的解:(1)3x2x100;(2)x28x160;(3)2x26x50引入新课通过上述一组题,让学生回答出:一元二次方程的根的情况有三种,即有两个不相等的实数根;两个相等的实数根;没有实数根接下来向学生提出问题:是什么条件决定着一元二次方程的根的情
2、况?这条件与方程的根之间又有什么关系呢?能否不解方程就可以明确方程的根的情况?这正是我们本课要探讨的课题(板书本课标题)新课先讨论上述三个小题中b24ac的情况与其根的联系再做如下推导:对任意一元二次方程ax2+bx+c=0(a0),可将其变形为a0,4a20由此可知b24ac的值的“三岐性”,即正、零、负直接影响着方程的根的情况(1)当b24ac0时,方程右边是一个正数(2)当b24ac0时,方程右边是0通过以上讨论,总结出:一元二次方程ax2bxc0的根的情况可由b24ac来判定故称b24ac是一元二次方程ax2bxc0的根的判别式,通常用“”来表示综上所述,一元二次方程ax2bxc0(a
3、0)当0时,有两个不相等的实数根;当0时,有两个相等的实数根;当0时,没有实数根反过来也成立注:“”读作“delta”例 不解方程,判别下列方程根的情况:(1)2x23x40;(2)16y2924y;(3)5(x21)7x0分析:要想确定上述方程的根的情况,只需算出“”,确定它的符号情况即可练习:P26 1 2 3小结应用判别式解题应注意以下几点:1应先把已知方程化为一元二次方程的一般形式,为应用判别式创造条件2不必解方程,只须先求出,确定其符号即可,具体数值不一定要计算出来3其逆命题也是成立的作业:习题12.3 A组 1-4 第9课 一元二次方程的根的判别式(二)一、教学目的通过对含有字母系
4、数方程的根的讨论,培养学生运用一元二次方程根的判别式的论证能力和逻辑思维能力培养学生思考问题的灵活性和严密性二、教学重点、难点重点:巩固掌握根的判别式的应用能力难点:利用根的判别式进行有关证明三、教学过程复习提问1写出一元二次方程ax2bxc0的根的判别式2方程ax2bxc0(a0)的根有哪几种情况?如何判断?引入新课教材中“想一想”提出了如下问题:已知关于x的方程2x2-(4k+1)x+2k2-1=0,其中=-(4k+1)2-42(2k2-1)=16k2+8k+1-16k2+8=8k+9想一想,当k取什么值时,(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根
5、新课上述问题,实际上是这样一道题目例1当k取什么值时,关于x的方程2x2-(4k+1)x+2k2-1=0(1)有两个不相等的实数根;(2)有两个相等实数根;(3)方程没有实数根 讲解例1 例2求证关于x的方程(k2+1)x2-2kx+(k2+4)=0没有实数根分析:要证明上述方程没有实数根,只须证明其根的判别式0即可例3证明关于x的方程(x-1)(x-2)=m2有两个不相等的实数根讲解例3 例4已知a,b,c是ABC的三边的长,求证方程a2x2-(a2+b2-c2)x+b2=0没有实数根 讲解例4 练习:1若mn,求证关于x的方程2x2+2(m+n)x+m2+n2=0无实数根2求证:关于x的方
6、程x2+(2m+1)x-m2+m=0有两个不相等的实数根小结解决判定一元二次方程ax2+bx+c=0的方程根的情况应依照下列步骤进行:1计算;2用配方法将恒等变形(或变成易于观察其符号的情况);3判断的符号,得出结论作业:习题12.3 B组第10课 一元二次方程的根与系数的关系(一)一、教学目的1使学生掌握一元二次方程根与系数的关系(即韦达定理),并学会初步运用2培养学生分析、观察以及利用求根公式进行推理论证的能力二、教学重点、难点重点:韦达定理的推导和初步运用难点:定理的应用三、教学过程复习提问1一元二次方程ax2bxc0的求根公式应如何表述?2上述方程两根之和等于什么?两根之积呢?新课一元
7、二次方程ax2bxc0(a0)的两根为由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”)如果ax2bxc0(a0)的两个根是x1,x2,那么我们再来看二次项系数为1的一元二次方程x2pxq0的根与系数的关系得出:如果方程x2pxq0的两根是x1,x2,那么x1x2p,x1x2q由 x1x2p,x1x2q可知p(x1x2),qx1x2, 方程x2pxq0,即 x2(x1x2)xx1x20这就是说,以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2(x1x2)xx1x20例1已知方程5x2kx60的一个根是2,求它的另一根及k的值 讲解例1 练习 P32 1 2小结1
8、本节课主要学习了一元二次方程根与系数关系定理,应在应用过程中熟记定理2要掌握定理的两个应用:一是不解方程直接求方程的两根之和与两根之积;二是已知方程一根求另一根及系数中字母的值作业:习题12.4 A组 1 第11课 一元二次方程的根与系数的关系(二)一、教学目的1复习巩固一元二次方程根与系数关系的定理2学习定理的又一应用,即“已知方程,求方程两根的代数式的值”3通过应用定理,培养学生分析问题和综合运用所学知识解决问题的能力二、教学重点、难点重点:已知方程求关于根的代数式的值难点:用两根之和与两根之积表示含有两根的各种代数式三、教学过程复习提问1一元二次方程根与系数关系的定理是什么?2下列各方程
9、两根之和与两根之积各是什么?(1)x23x180;(2)x25x45;(3)3x27x20;(4)2x23x0引入新课考虑下列两个问题;1方程5x2kx60两根互为相反数,k为何值?2方程2x27xk0的两根中有一个根为0,k为何值?我们可以从这两题中看出,根与系数之间的运算是十分巧妙的本课我们将深入探讨这一问题新课例2利用根与系数的关系,求一元二次方程2x23x10两根的(1)平方和;(2)倒数和 在讲本题时,要突出讲使用韦达定理,寻求x2pxq0中的p,q的值例4已知两个数的和等于8,积等于9,求这两个数这是一道“根与系数的关系定理”的应用题,要注意讲此类题的解题步骤:(1)运用定理构造方
10、程; (2)解方程求两根; (3)得出所欲求的两个数练习:P32 3、4、5小结本课学习了利用根与系数关系解决三类问题的方法:(1)已知方程求两根的各种代数式的值;(2)已知两根的代数式的值,构造新方程;(3)已知两根的和与积,构造方程,解方程,求出与根对应的数作业:习题12.4 A组 2、3、4 第12课 二次三项式的因式分解(公式法)(一)一、教学目的1使学生理解二次三项式的意义及解方程和因式分解的关系2使学生掌握用求根法在实数范围内将二次三项式分解国式二、教学重点、难点重点:用求根法分解二次三项式难点:方程的同解变形与多项式的恒等变形的区别三、教学过程复习提问解方程:1x2-x-60;
11、23x2-11x+100; 34x2+8x-10引入新课在解上述方程时,第1,2题均可用十字相乘法分解因式,迅速求解而第3题则只有采用其他方法此题给我们启示,用十字相乘法分解二次三项式,有时是无法做到的是否存在新的方法能分解二次三项式呢?第3个方程的求解给我们以启发新课二次三项式ax2+bx+c(a0),我们已经可以用十字相乘法分解一些简单形式下面我们介绍利用一元二次方程的求根公式将之分解的方法 易知,解一元二次方程2x2-6x+40时,可将左边分解因式,即2(x-1)(x-2)0, 求得其两根x11,x22.反之,我们也可利用一元二次方程的两个根来分解二次三项式即,令二次三项式为0,解此一元
12、二次方程,求出其根,从而分解二次三项式具体方法如下: 如果一元二次方程ax2+bx+c0(a0)的两个根是ax2-(x1+x2)x+x1x2a(x-x1)(x-x2)从而得出如下结论在分解二次三项式ax2+bx+c的因式时,可先用公式求出方程ax2+bx+c=0的两根x1,x2,然后写成ax2+bx+ca(x-x1)(x-x2) 例如,方程2x2-6x+40的两根是x11,x22 则可将二次三项式分解因式,得2x2-6x+42(x-1)(x-2)例1把4x2-5分解因式 讲解例1 练习:P37 1小结:用公式法解决二次三项式的因式分解问题时,其步骤为:1令二次三项式ax2+bx+c0;2解方程
13、(用求根公式等方法),得方程两根x1,x2;3代入a(x-x1)(x-x2)作业:习题12.5 A组 1第13课 二次三项式的因式分解(公式法)(二)一、教学目的使学生进一步巩固和熟练掌握公式法将二次三项式因式分解的方法二、教学重点、难点重点:用求根公式法分解二次三项式难点:二元二次三项式的因式分解三、教学过程复习提问求根法分解二次三项式的因式的步骤有哪些?引入新课上节课我们证明了:ax2+bx+ca(x-x1)(x-x2),其中x1,x2分别等于什么?应用这一结论,今天我们深入的探讨一些问题新课例2把4x2+8x-1分解因式 此题注意将二次项系数4分解乘入两因式的必要性,即化简结论 例3 把
14、2x2-8xy+5y2分解因式注意视之为关于x的方程,视y为常数的重要性 练习 P37 2小结 二次三项式ax2+bx+c(a0)分解因式的方法有三种,即1利用完全平方公式;2十字相乘法:即x2+(a+b)x+ab(x+a)(x+b);acx2+(ad+bc)x+bd(ax+b)(cx+d)3求根法:ax2+bx+ca(x-x1)(x-x2),(1)当b2-4ac0时,可在实数范围内分解;(2)当b2-4ac0时,在实数范围内不能分解 作业:习题12.5 A组 2 第14课一元二次方程的应用(一)一、教学目的1使学生会列出一元二次方程解应用题2使学生通过列方程解应用题,进一步提高逻辑思维能力和
15、分析问题、解决问题的能力二、教学重点、难点重点:由应用问题的条件列方程的方法难点:设“元”的灵活性和解的讨论三、教学过程复习提问1一元二次方程有哪些解法?(要求学生答出:开方法、配方法、公式法、因式分解法)2回忆一元二次方程解的情况(要求学生按0,0,0三种情况回答问题)3我们已经学过的列方程解应用题时,有哪些基本步骤?(要求学生回答:审题;设未知数;根据等量关系列方程(组);解方程(组);检验并写出答案)引入新课我们已经涉及了一个与一元二次方程有联系的应用此类问题还有吗?回答是肯定的:还有很多!本课我们将深入研究有关一元二次方程的应用题新课本章开始时,教材P3中我们提出了如下问题:用一块长8
16、0cm,宽60cm的薄钢片,在四个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖长方形盒子试问:应如何求出截去的小正方形的边长? 解:设小正方形边长为xcm,则盒子底面的长、宽分别为(80-2x)cm及(60-2x)cm,依题意,可得(80-2x)(60-2x)1500, 即 x2-70x+8250当时,我们不会解此方程现在,可用求根公式解此方程了x155,x215 当x55时,80-2x-30,60-2x-50; 当x15时,80-2x50,60-2X30 由于长、宽不能取负值,故只能取x15,即小正方形的边长为15cm 我们再回忆本章第1节中的一个应用题: 剪一块面积是1
17、50cm2的长方形铁片,使它的长比宽多5cm,这块铁片应怎样剪? 分析:要解决此问题,需求出铁片的长和宽,由于长比宽多5cm,可设宽为未知数来列方程 解:设这块铁片宽xcm,则长是(x+5)cm依题意,得x(x+5)150,即x2+5x-1500 x110,x2-15(舍去) x10,x+515 答:应将之剪成长15cm,宽10cm的形状练习 P41 1 2小结利用一元二次方程解应用题的主要步骤仍是:审题;设未知数;列方程;解方程;依题意检验所得的根;得出结论并作答 作业:习题12.6 A组 1、2、3第15课 一元二次方程的应用(二)一、教学目的使学生掌握有关面积和体积方面以及“药液问题”的
18、一元二次方程应用题的解法提高学生化实际问题为数学问题的能力二、教学重点、难点重点:用图示法分析题意列方程难点:方程的布列三、教学过程复习提问本小节第一课我们介绍了什么问题?引入新课今天我们进一步研究有关面积和体积方面以及“药液问题”的一元二次方程的应用题及其解法新课例1 如图1,有一块长25cm,宽15cm的长方形铁皮如果在铁皮的四个角上截去四个相同的小正方形,然后把四边折起来,做成一个底面积为231cm2的无盖长方体盒子,求截去的小正方形的边长应是多少?分析:如图1,考虑设截去的小正方形边长为xcm,则底面的长为(25-2x)cm,宽为(15-2x)cm,由此,知由长宽矩形面积,可列出方程
19、解:设小正方形的边长为xcm,依题意,得(25-2x)(15-2x)231, 即x2-20x+360, 解得x12,x218(舍去) 答:截去的小正方形的边长为2cm例2一个容器盛满药液20升,第一次倒出若干升,用水加满;第二次倒出同样的升数,这时容器里剩下药液5升,问每次倒出药液多少升? x10 答:第一、二次倒出药液分别为10升,5升练习 P41 3、4小结1注意充分利用图示列方程解有关面积和体积的应用题2要注意关于“药液问题”应用题,列方程要以“剩下药液”为依据列式作业:习题12.6 4、5、6、7 第16课 一元二次方程的应用(三)一、教学目的使学生掌握列一元二次方程解关于增长率的应用
20、题的方法并进一步培养学生分析问题和解决问题的能力二、教学重点、难点重点:弄清有关增长率的数量关系难点:利用数量关系列方程的方法三、教学过程复习提问1问题:(1)某厂生产某种产品,产品总数为1600个,合格品数为1563个,合格率是多少?(2)某种田农户用800千克稻谷碾出600千克大米,问出米率是多少?(3)某商店二月份的营业额为3.5万元,三月份的营业额为5万元,三月份与二月份相比,营业额的增长率是多少? 新课例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增产的百分率是多少?分析:用译式法讨论列式一月份产量为5000吨,若月增长率为x,则二月份比一
21、月份增产5000x吨 二月份产量为(5000+5000x)5000(1+x)吨; 三月份比二月份增产5000(1+x)x吨, 三月份产量为5000(1+x)+5000(1+x)x5000(1+x)2吨再根据题意,即可列出方程 解:设平均每月增长的百分率为x,根据题意, 得5000(1+x)27200,即(1+x)21.44, 1+x1.2,x10.2,x2-2.2(不合题意,舍去) 答:平均每月增长率为20例2 某印刷厂一月份印刷了科技书籍50万册,第一季度共印182万册,问二、三月份平均每月的增长率是多少? 解:设每月增长率为x,依题意得50+50(1+x)+50(1+x)2182,答:二、
22、三月份平均月增长率为20练习:P41 5小结依题意,依增长情况列方程是此类题目解题的关键作业:习题12.6 A组 8 第17课可化为一元二次方程的分式方程教学目的1使学生掌握可化为一元二次方程的分式方程的解法,会用去分母或换元法求方程的解2使学生了解解分式方程产生增根的原因,掌握验根的方法3结合教学对学生进行化归转化思想的培养教学重点将分式方程转化为一元二次方程教学难点分式方程验根的必要性的认识教学过程一、复习1我们学过分式方程,同学们还记得怎样解分式方程吗?2请同学们解下列方程:3请同学们结合上面两个题,回答下列问题:(1)什么是分式方程?解分式方程的一般方法与步骤是什么?(2)在解分式方程
23、过程中,容易犯的错误是什么?应当怎样避免?(3)解分式方程为什么必须验根,应当怎样验根?指出:分母里含有未知数的方程叫做分式方程解分式方程的一般思路是化分式方程为整式方程,解分式方程的一般步骤是:(1)把方程中各分式的分母因式分解,确定各分式的最简公分母(2)用最简公分母去乘方程两边,约去分母,使分式方程化为整式方程(3)解这个整式方程,得到此整式方程的根(4)检验解分式方程容易犯的错误有:(1)去分母时,原方程的整式部分漏乘(2)约去分母后,分子是多项式时,要注意添括号根据方程同解原理:方程两边都乘以不等于零的同一个数,所得方程与原方程同解而我们在解分式方程时,方程两边同时乘以最简公分母,它
24、是一个整式,当此整式为零时,就破坏了方程的同解原理,因此最后整式方程的根就不一定是原方程的根,所以解分式方程必须验根验根的一般方法是:把最后整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根为原方程的增根,必须舍去,否则是原方程的根二、新课 讲解例1 讲解例2三、练习 P49 1、2四、小结1分式方程的定义2分式方程的一般解法及解方程步骤3用换元法解分式方程时,方程具备的特点,验根的方法五、作业 习题12.7 A组 1、2、3、4 第18课可化为一元二次方程的分式方程的应用教学目的1使学生掌握可化为一元二次方程的分式方程的解法,会用去分母或换元法求方程的解2会列出可化为一元二次方
25、程的分式方程,解应用题3在教学中培养学生分析问题与解决问题的能力教学重点:列方程教学过程一、复习1什么叫分式方程?解分式方程的一般方法是什么?在不同的解法过程中应分别注意什么?二、新课今天我们学习利用分式方程解应用题例1甲乙二人同时从张庄出发,步行15千米来到李庄甲比乙每小时多走1千米,结果比乙早到半小时,二人每小时各走几千米?讲解例1 例2某农场开挖一条长960m的渠道,开工后每天比原计划多挖20m,结果提前4天完成任务,原计划每天挖多少?讲解例2 三、练习1从甲站到乙站有150千米,一列快车和一列慢车同时从甲站开出,1小时后,快车在慢车前12千米;快车到达乙站此慢车早25分,快车和慢车每小
26、时各走几千米?2某工厂贮存350吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,使贮存煤比原计划多用20天,贮存的煤原计划用多少天?每天烧少吨?3甲、乙两队学生绿化校园如果两队合作,6天可以完成如果单独工作,甲队比乙队少用5天,两队单独工作各需多少天完成?四、小结1列方程解应用题的一般步骤2列分式方程解应用题验根的两个目的五、作业 习题12.7A组 4、5 第19课 由一个二元一次方程和一个二元二次方程组成的方程组(一)一、教学目的1使学生了解二元二次方程、二元二次方程组的概念2使学生熟练掌握用代入法解由一个二元一次方程和一个二元二次方程所组成的方程组二、教学重点、难点重点:用代入法解二元二次
27、方程组难点:二元一次方程代入二元二次方程的技巧三、教学过程复习提问1我们学过哪些方程及其解法?2二元一次方程组有哪些解法,其解法步骤是什么?引入新课我们已经知道,方程就是含有未知数的等式方程x2+2xy+y2+x+y+6=0 (*)是一个含有两个未知数,并且含有未知数的项的最高次数是2的方程这样的方程我们怎样称呼它呢?新课形如方程(*)和下述方程(1)x2+3y2+4x+3y+6=0;(2)xy+3y+7=0;(3)x2+3xy+5=0;(4)x2+y2+4=0,等含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程其中(*)中,x2,2xy,y2叫做这个方程的二次项,4
28、x,3y叫做一次项,6叫做常数项我们看下面的两个方程组:第一个方程组是由一个二元二次方程和一个二元一次方程组成的;第二个方程组是由两个二元二次方程组成的像这样的方程组叫做二元二次方程组本课主要研究由一个二元一次方程和一个二元二次方程组成的方程组的解法一个二元一次方程和一个二元二次方程组成的方程组一般都可以用代入法来解注意以下三点:(2)为什么将x1,x2代入;(3)作此类题要按格式写规范练习 P57 1、2、小结解由一个二元一次方程和一个二元二次方程构成的二元二次方程组,其解法步骤是:将一次方程代入二次方程,将之化为一元方程,解一元方程,求出一个未知数的值;将求出的一个未知数的值代入一次方程,
29、求出另一个未知数的值;写出方程组的解作业:P12.8A组 1、2 第19课由一个二元一次方程和一个二元二次方程组成的方程组(二)一、教学目的1使学生深入理解二元二次方程、二元二次方程组的概念2使学生熟练掌握用构造方程法和因式分解化为同解方程组来解方程组的方法二、教学重点、难点重点:用构造法解方程组难点:化为同解方程组来解由一个二元一次方程和一个二元二次方程组成的方程组的方法三、教学过程复习提问1什么样的方程叫做二元二次方程?什么叫做二元二次方程组?2我们学了由一个二元一次方程和一个二元二次方程组成的方程组的什么解法?其具体步骤是什么?引入新课这类二元二次方程组还有其他解法吗?我们继续进行研究新
30、课解法1:由,得x=7y 把代入,整理,得y27y+12=0解得 y1=3,y2=4把y1=3代入,得x1=4;把y2=4代入,得x2=3解法2:观察方程组,其特征不难使人联想到一元二次方程根与系数的关系,即视x,y是方程at2+bt+c=0的两根,从而通过解方程即可求出x,y了视方程组的x,y是一元二次方程z2-7z+12=0的两个根,解这个方程,得z1=3,或z2=4练习 P57 3小结1构造一元二次方程解方程组,要注意求出的方程组的解有两组2用化为同解方程组解方程组的方法,关键在对二元二次方程分解因式作业:习题12.8 A组 3 第20课 由一个二元二次方程和一个可以分解为 两个二元一次
31、方程的方程组成的方程组一、教学目的1使学生学会用分解降次的方法解二元二次方程组2通过观察方程组中方程的特点,思考分析解法,培养学生的观察分析问题的能力二、教学重点、难点重点:用分解降次的方法解二元二次方程组难点:正确地通过分解将一个二元二次方程转化为两个二元一次方程三、教学过程复习提问1二元二次方程组有哪几种类型?引入新课前面我们已经学了应用代入法、构造一元二次方程法、分解成同解方程组法等方法,解由一个二元一次方程与一个二元二次方程组成的方程组的解法下面我们研究一些特殊的由两个二元二次方程组成的方程组的解法新课将分解为(x2y)(x3y)=0,使得 x2y=0或x3y=0,用代入法可得原方程组的解这种分解降次,化为学生熟知的有关方程组的方法,是一种重要解题思想方法在教学中要讲清楚这种数学思想方法练习P60 1、2小结1一些特殊的二元二次方程组可用分解降次法解之,关键是将其中一个方程分解因式2解题时要注意观察,选择分解对象作业:习题12.9 A组 1、2、3