1、5.5 二次函数的应用(2)【最大面积是多少】教学目标:掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题教学重点:本节的重点是应用二次函数解决图形有关的最值问题,这是本书惟一的一种类型,也是二次函数综合题目中常见的一种类型在二次函数的应用中占有重要的地位,是经常考查的题型,根据图形中的线段之间的关系,与二次函数结合,可解决此类问题教学难点:由图中找到二次函数表达式是本节的难点,它常用的有三角形相似,对应线段成比例,面积公式等,应用这些等式往往可以找到二次函数的表达式教学方法:教师指导学
2、生自学法。教学过程:1写出正方体的表面积y与棱长x之间的函数关系式。2一个圆柱的高等于它的底面半径r,写出圆柱的表面积s与半径r之间的函数关系式。3已知一个矩形的周长为12 m,设一边长为x m,面积为y ,写出y与x之间的函数关系式。二、新知探究:例1如图,一边靠学校院墙,其他三边用12 m长的篱笆围成一个矩形花圃,设矩形ABCD的边AB=x m,面积为S。(1)写出S与x之间的函数关系式; (2)当x取何值时,面积S最大,最大值是多少?例2(1)若用一段长12m的铝合金型材做一个如图所示的矩形窗框,那么当矩形的长、宽分别为多少时,才能使该窗户的透光面积最大?*(2)若用一段长12m的铝合金
3、型材做一个上部是半圆、下部是矩形的窗框,那么当矩形的长、宽分别为多少时,才能使该窗户的透光面积最大?例3如图,在直径为AB的半圆内,画一个三角形区域,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8。现要建造一个内接于ABC的矩形DEFN,其中DE在AB上,如图设计的方案是使AC=8,BC=6。(1)求ABC中AB边上的高h。(2)设DN=x,当x取何值时,水池DEFN面积y最大?(3)在实际施工时发现AB边上距B点1.85米处有一棵大树,问这棵大树是否位于最大水池的边上?如果在,为保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树。二、练习1如图,在RtABC中,AC=3cm,BC=4cm,四边形CFDE为矩形,其中CF、CE在两直角边上,设矩形的一边CF=xcm当x取何值时,矩形ECFD的面积最大?最大是多少? 2如图,在RtABC中,作一个长方形DEGF,其中FG边在斜边上,AC=3cm,BC=4cm,那么长方形OEGF的面积最大是多少?3如图,已知ABC,矩形GDEF的DE边在BC边上G、F分别在AB、AC边上,BC=5cm,SABC为30cm2,AH为ABC在BC边上的高,求ABC的内接长方形的最大面积三、小结:本节课我们学习了什么?课后作业:板书设计教学反思