1、5.5二次函数的运用(3)【拱桥问题】教学目标:1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。2、掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值。教学重点:应用二次函数最值解决实际问题中的最大利润。教学难点:能够正确地应用二次函数最值解决实际问题中的最大利润特别是把握好自变量的取值范围对最值的影响。学习过程:一、预备练习:1如图所示的抛物线的解析式可设为 ,若ABx轴,且AB=4,OC=1,则点A的坐标为 ,点B的坐标为 ;代入解析式可得出此抛物线的解析式为 。2某涵洞是抛物线形,它的截面如图所示。现测得水面宽AB=4m,涵洞顶点O到水
2、面的距离为1m,于是你可推断点A的坐标是 ,点B的坐标为 ;根据图中的直角坐标系内,涵洞所在的抛物线的函数解析式可设为 。二、新课导学:例1有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。例2某涵洞是抛物线形,它的截面如图所示,现测得水面宽16m,涵洞顶点O到水面的距离为24m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?三、课后练习:1河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的解析式为y=,当水位线在AB位置时,水面宽 AB = 30米,这时水面离桥顶的高度h是( ) A、5米 B、6米; C、8米; D、9米2一座抛物线型拱桥如图所示,桥下水面宽度是4m,拱高是2m.当水面下降1m后,水面的宽度是多少?3一个涵洞成抛物线形,它的截面如图,现测得,当水面宽AB1.6 m时,涵洞顶点与水面的距离为2.4 m这时,离开水面1.5 m处,涵洞宽ED是多少?是否会超过1 m?四、小结:本节课我们学习了什么?课后作业:板书设计教学反思