1、第八单元 视图、投影与变换第31课时 视图与投影教学目标【考试目标】1.视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述简单的几何体或实物原型;2.了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作立体模型;3.了解基本几何体与其三视图、展开图(球除外)之间的关系;知道这种关系在现实生活中的应用(如物体的包装);4.能根据光线的方向辨认实物的阴影;5.了解中心投影和平行投影.【教学重点】1. 掌握几何体的三视图.2. 掌握投影现象.教学过程一、 体系图引入,引发思考二、 引入真题、归纳考点【例1】(2016年江西)有两个完全相同的正方体,按下面如图方式摆放,其主视图是(C)【
2、解析】主视图是指从物体的前面向后面所观察到的视图,并且看不见的线要画成虚线.观察实物图,可以看出只有选项C符合题意;【例2】(2016年随州)如图,是某工件的三视图,则此工件的表面积为 (D)A15cm2 B51cm2C66cm2 D24cm2 【解析】根据所给的三视图可知,此工件是一个高为4cm,底面半径为3cm的圆锥,利用勾股定理可求出圆锥的母线是5cm,所以圆锥的表面积=32+35=24(cm2),所以D选项正确.【例3】(2016年陕西)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“
3、望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量.于是他们首先用平面镜进行测量,方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C.镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合.这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知:ABBM,EDBM,GFBM,其中,测量时所使用的平面镜的厚度忽略不计.请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.三、师生互动,总结知识先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:同步导练教学反思学生对投影与视图的掌握情况很好,望多加复习巩固,做到熟练会用.