1、24.3.2相似三角形的识别(二)教学目标 1会说出识别两个三角形相似的方法:有两边对应成比例,且夹角相等的两个三角形相似;三条边对应成比例的两个三角形相似。2能依据条件,灵活运用三种识别方法,正确判断两个三角形相似。教学过程一、复习 1现在要判断两个三角形相似有哪几种方法? 有两种方法,(1)是根据定义;(2)是有两个角对应相等的两个三角形相似。 2如图ABC中,D、E是AB、AC上三等分点(即ADAB,AEAC),那么ADE与ABC相似吗?你用的是哪一种方法? 由于没有两个角对应相等,同学们可以动手量一量,量什么东西后可以判断它们能否相似?(可能有一部分同学用量角器量角,有一部分同学量线段
2、,看看能否成比例)无论哪一种,都应肯定他们,是正确的,要求同学说出是应用哪一种方法判断出的。二、新课讲解 同学们通过量角或量线段计算之后,得出:ADEABC。从已知条件看,ADE与ABC有一对应角相等,即AA(是公共角),而一个条件是ADAB,AEAC,即是,;因此。ADE的两条边 AD、AE与ABC的两条边AB、AC会对应成比例,它们的夹角又相等,符合这样条件的两个三角形也会相似吗?我们再做一次实验。观察图,如果有一点E在边AC上,那么点E应该在什么位置才能使ADE与ABC相似呢? 图中两个三角形的一组对应边AD与AB的长度的比值为,将点E由点A开始在AC上移动,可以发现当AEAC时,ADE
3、与ABC相似。此时 同学们画两个三角形,ABC与ABC,使之AA,AB2AB,AC2AC,量一量BC与BC的长,计算BC:BC与同伴交流,是否与,相等?再量一量B与B、C与C,它们是否对应相等呢?这样的两个三角形相似吗? 于是有识别两个三角形相似的第二种简便方法: 如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简单地说;两边对应成比例且夹角相等,两三角形相似。 强调对应相等的角必须是成比例的边的夹角,如果不是夹角,它们不一定会相似。你能画出有两边会对应成比例,有一个角相等,但它们不相似的两个三角形吗?(画顶角与底角相等的两个等腰三角形)BB, 例题
4、: 1(课本中例3)判断图中AEB与FEC是否相似? 2如图ABC中,D、E是AB、AC上点,AB7.8,AD3,AC6,CE2.1,试判断ADE与ABC是否会相似,小张同学的判断理由是这样的: 解:因为ACAE+CE,而AC6,CE2.1, 故 AE6-2.13.9 由于 所以ADE与ABC不会相似。 你同意小张同学的判断吗?请你说说理由。 小张同学的判断是错误的。 因为,所以而 A是公共角,AA, 所以ADEACB 请同学再做一次实验,看看如果两个三角形的三条边都成比例,那么这两个三角形是否相似? 看课本页“做一做”。 通过实验得出:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似简单说成:三边成比例两三角形相似。例:ABC和ABC中,AB6cm,BC8cm,ACl0cm,AB18cm,BC24cm,AC30cm,试判定它们是否相似,并说明理由。三、练习课本59页练习1、2,3四、小结到现在我们学习了识别两个三角形是否相似的三种较简便的方法,请同学回忆说出