1、24.3.2相似三角形的识别(一)教学目标: 1会说出识别两个三角形相似的方法,有两个角分别相等的两个三角形相似。2会用这种方法判断两个三角形是否相似。 教学过程:一、复习 1两个矩形一定会相似吗?为什么? 2如何判断两个三角形是否相似? 根据定义:对应角相等,对应边成比例。3如图ABC与BC会相似吗?为什么?是否存在识别两个三角形相似的简便方法?本节就是探索这方面的识别两个三角形相似的方法。二、新课讲解 同学们观察你与你的同伴所用的三角尺,以及老师用的三角板,如有一个角是30的直角三角尺,它们的大小不一样。这些三角形是相似的,我们就从平常所用的三角尺入手探索。 (1)是45角的三角尺,是等腰
2、直角三角形会相似。 (2)是30的三角尺,那么另一个锐角为60,有一个直角,因此它们的三个角都相等,同学们量一量它们的对应边,是否成比例呢?这样,从直观上看,一个三角形的三个角分别与另一个三角形三个角对应相等,它们好像就会“相似”。是这样吗?请同学们动手试一试:1画两个三角形,使它们的三个角分别相等。 画ABC与DEF,使AD、BE,CF,在实际画图过程中,同学们画几个角相等?为什么? 实际画图中,只画AD,BE,则第三个角C与F一定会相等,这是根据三角形内角和为180所确定的。 2用刻度尺量一量各边长,它们的对应边是否会成比例?与同伴交流,是否有相同结果。 3发现什么现象:发现如果一个三角形
3、的三个角与另一个三角形的三个角对应相等,那么这两个三角形相似。 4两个矩形的四个角也都分别相等,它们为什么不会相似呢? 这是由于三角形具有它特殊的性质。三角形有稳定性,而四边形有不稳定性。 于是我们得到识别两个三角形相似的一个较为简便的方法: 如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说:两角对应相等,两三角形相似。 同学们思考,能否再简便一些,仅有一对角对应相等的两个三角形,是否一定会相似呢? 例题:1如图两个直角三角形ABC和ABC中,CC90,AA,判断这两个三角形是否相似。2在ABC与ABC中,AA50,B70,B60,这两个三角形相似吗?3如图,ABC中,DEBC,EFAB,试说明ADEEFC。三、练习 1ABC中,ACB90,CDAB于D,找出图中所有的相似三角形。 2ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使ADE与ABC会相似,你怎样画这条直线,并说明理由。和你的同伴交流作法是否一样?四、小结本节课我们学习了识别两个三角形相似的简便方法:有两个角对应相等的两个三角形相似。