1、湖北省安陆市德安初级中学八年级数学下册 19.3梯形教案(1) 新人教版一、教学目标:1 探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质2 能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力二、课堂引入1创设问题情境引出梯形概念【观察】(教材P117中的观察)右图中,有你熟悉的图形吗?它们有什么共同的特点?2画一画:在下列所给图中的每个三角形中画一条线段,【思考】(1)怎样画才能得到一个梯形?(2)在哪些三角形中,能够得到一个等腰梯形?梯形 一组对边平行而另一组对边不平行的四边形叫做梯形(强调:梯形与平行四边形的区别和联系;上、下底
2、的概念是由底的长短来定义的,而并不是指位置来说的)(1)一些基本概念(如图):底、腰、高(2)等腰梯形:两腰相等的梯形叫做等腰梯形(3)直角梯形:有一个角是直角的梯形叫做直角梯形3做做探索等腰梯形的性质(引入用轴对称解决问题的思想)在一张方格纸上作一个等腰梯形,连接两条对角线【问题一】图中有哪些相等的线段?有哪些相等的角?这个图形是轴对称图形吗?学生画图并通过观察猜想;【问题二】这个等腰梯形的两条对角线的长度有什么关系?结论: 等腰梯形是轴对称图形,上下底的中点连线是对称轴等腰梯形同一底上的两个角相等等腰梯形的两条对角线相等三、例习题分析 例1(教材P118的例1)略(延长两腰 梯形辅助线添加
3、方法三)例2(补充)如图,梯形ABCD中,ADBC,B=70,C=40,AD=6cm,BC=15cm求CD的长 分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题其方法是:平移一腰,过点A作AEDC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到ABE是等腰三角形(EA=EB),因此CD=EA=EB=BCEC=BCAD=9cm 解(略) 例3 (补充) 已知:如图,在梯形ABCD中,ADBC,D90,CABABC, BEAC于E求证:BECD 分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DFAB交BC于F,因此四边形ABFD是平
4、行四边形,则DF=AB,由已知可导出DFC=BAE,因此RtABERtFDC(AAS),故可得出BE=CD证明(略)另证:如图,根据题意可构造等腰梯形ABFD,证明ABEFDC即可四、随堂练习1填空(1)在梯形ABCD中,已知ADBC,B=50,C=80,AD=a,BC=b,,则DC= (2)直角梯形的高为6cm,有一个角是30,则这个梯形的两腰分别是 和 (3)等腰梯形 ABCD中,ABDC,A C平分DAB,DAB=60,若梯形周长为8cm,则AD= 2已知:如图,在等腰梯形ABCD中,ABCD,ABCD,AD=BC,BD平分ABC,A=60,梯形周长是20cm,求梯形的各边的长 (AD=DC=BC=4,AB=8)3求证:等腰梯形两腰上的高相等五、课后练习1填空:已知直角梯形的两腰之比是12,那么该梯形的最大角为 ,最小角为 2已知等腰梯形的锐角等于60它的两底分别为15cm和49cm,求它的腰长和面积3已知:如图,梯形ABCD中,CD/AB,求证:AD=ABDC4已知,如图,梯形ABCD中,ADBC,E是AB的中点,DECE,求证:AD+BC=DC(延长DE交CB延长线于点F,由全等可得结论)