1、锐角三角函数(1)【教学目标】1.探索直角三角形中锐角三角函数值与三边之间的关系。2.掌握三角函数定义式:sinA=, cosA=,【重点难点】重点:三角函数定义的理解。难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。【教学过程】一、情境导入如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁先到达楼顶?如果AB和AB相等,和大小不同, 那么它们的高度AC 和AC相等吗?AB、AC、BC与,AB、AC、BC与之间有什么关系呢? -导出新课二、新课教学1、合作探究 (1) RtAB1C1和RtABC有什么关系?(2)和,和,和有什么关系? (3)如果改变B在AB1上的位置
2、呢?2、三角函数的定义在RtABC中,如果锐角A确定,那么A的对边与斜边的比、邻边与斜边的比也随之确定.A的对边与邻边的比叫做A的正弦(sine),记作sinA,即sinAA的邻边与斜边的比叫做A的余弦(cosine),记作cosA,即cosA=A的对边与A的邻边的比叫做A的正切(tangent),记作tanA,即锐角A的正弦、余弦和正切统称A的三角函数. 注意:sinA,cosA,tanA都是一个完整的符号,单独的 “sin”没有意义,其中A前面的“”一般省略不写。师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗?师:(点拨)直角三角形中,斜边大于直角边生:独立思考,尝试回
3、答,交流结果明确:0sina1,0cosa1.巩固练习:课本第6页课内练习T1、作业题T1、23、例题教学:课本第5页中例1.例1 如图,在RtABC中,C=90,AB=5,BC=3, 求A, B的正弦,余弦和正切. 分析:由勾股定理求出AC的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。师:观察以上计算结果,你发现了什么?生:独立思考,交流结果,举手板演 明确:sinA=cosB,cosA=sinB,tanAtanB=14、课堂练习:课本第6页课内练习T2、3,作业题T3、4、5三、课堂小结:谈谈今天的收获1、内容总结(1)在RtABC中,设C=900,为RtABC的一个锐角,则的正弦 , 的余弦 ,的正切 (2)一般地,在RtABC中, 当C=90时,sinA=cosB,cosA=sinB,tanAtanB=1 2、方法归纳 在涉及直角三角形边角关系时,常借助三角函数定义来解四、布置作业:见作业本【板书设计】锐角三角函数(1)sin A=叫A的正弦 例1cos A=叫A的余弦叫A的正切在RtABC中, 当C=90时,sinA=cosB,cosA=sinB,tanAtanB=1