1、相似三角形的判定一、教材分析相似三角形的判定是人教版九年级下册中继学生学习了“相似图形”“相似图形的性质判定”、“相似三角形”之后的一个学习内容。它为后面测量和研究三角函数做了铺垫,在学习平面几何中起着承上启下的作用。因此必须熟练掌握三角形相似的判定,并能灵活运用。教材从三对角、两对角、一对角对应相等的顺序展开探究,符合学生认知规律。二、学情分析学生通过前面的学习已认识了相似图形的性质和判定,认识了相似三角形,这为探究三角形相似的判定做好了知识上的准备。九年级学生动手操作能力逐渐成熟,能主动参与本节课的操作、探究,充分体验获得知识的快乐。三、教学目标1.掌握判定两个三角形相似的方法:如果两个三
2、角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。2.培养学生的观察发现比较归纳能力,感受两个三角形相似的判定方法2与全等三角形判定方法(SAS)的区别与联系,体验事物间特殊与一般的关系。3.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力四、教学重点难点重点两个三角形相似的判定方法2及其应用难点探究两个三角形相似判定方法2的过程。五、教学过程设计一新课引入:1 复习两个三角形相似的判定方法1与全等三角形判定方法(SSS)的区别与联系: SSS如果两个三角形的三组对应边的比相等,那么这两个三角形相似。(相似的判定方法1)2 回顾探究判定引例判定方法1的过程探究两个
3、三角形相似判定方法2的途径 二 提出问题:利用刻度尺和量角器画ABC与A1B1C1,使A=A1,和都等于给定的值k,量出它们的第三组对应边BC和B1C1的长,它们的比等于k吗?另外两组对应角B与B1,C与C1是否相等? (学生独立操作并判断)分析:学生通过度量,不难发现这两个三角形的第三组对应边BC和B1C1的比都等于k,另外两组对应角B=B1,C=C1。 延伸问题:改变A或k值的大小,再试一试,是否有同样的结论?(利用刻度尺和量角器,让学生先进行小组合作再作出具体判断。) 探究方法:探究2改变A或k值的大小,再试一试,是否有同样的结论?(教师应用“几何画板”等计算机软件作动态探究进行演示验证
4、,引导学生学习如何在动态变化中捕捉不变因素。)归纳:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。(定理的证明由学生独立完成)若A=A1,=k则ABCA1B1C1辨析:对于ABC与A1B1C1,如果=,B=B1,这两个三角形相似吗?试着画画看。(让学生先独立思考,再进行小组交流,寻找问题的所在,并集中展示反例。)讨论:上述判定方法中的“角”一定要是两对应边的夹角吗?也就是说:如果两边对应成比例且其中一边的对角对应相等的两个三角形是否相似呢?结论:两边对应成比例且其中一边的对角对应相等的两个三角形不一定相似.三例题探究: 例2 (补充)已知:如图,矩形ABCD中,
5、E为BC上一点,DFAE于F,若AB=4,AD=5,AE=6,求DF的长分析:要求的是线段DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在ABE和AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似四课堂练习1教材P36的练习1、22已知:如图,1=2=3,求证:ABCADE3下列说法是否正确,并说明理由(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形五课堂小结:六、练习及检测题1教材P36的练习1、22已知:如图,1=2=3,求证:ABCADE3下列说法是否正确,并说明理由(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形七、作业设计1已知:如图,ABC 的高AD、BE交于点F求证:2已知:如图,BE是ABC的外接圆O的直径,CD是ABC的高(1)求证:ACBC=BECD;(2)若CD=6,AD=3,BD=8,求O的直径BE的长