1、绝对值教学目标借助数轴初步理解绝对值的概念,能求一个数的绝对值通过应用绝对值解决实际问题,体会绝对值的意义和作用培养学生积极参与探索活动,体会数形结合的方法教学过程 一、复习提问,新课引入 1什么叫互为相反数? 2在数轴上表示互为相反数的两个点和原点的位置关系怎样? 二、新授 1观察课本第11页图12-6,回答: 我们就把这个距离10叫做数-10、10的绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a 这里的数a可以是正数、负数和0 2试一试: (1)+2=_,=_,+10.6=_ (2)0=_ (3)-12=_,-20.8=_,-32=_ 3你能从上面解答中发现什么规律吗
2、? (1)一个正数的绝对值是它本身; (2)零的绝对值是零; (3)一个负数的绝对值是它的相反数 我们用a表示任意一个有理数,上述式子可以表示为: 当a是正数时,a=_; 当a是负数时,a=_; 当a=0时,a=_ 归纳: 任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,不可能是负数,即对任意有理数a,总有a0 两个互为相反数的绝对值相等,即a=-a 因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零 三、巩固练习 课本第11页练习1、2题 四、课堂小结 五、作业布置 课本第14页习题12第4、7、10题板书设计:绝对值 任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,不可能是负数,即对任意有理数a,总有a0 两个互为相反数的绝对值相等,即a=-a 0的绝对值是0,0的相反数是它本身0。教学反思: