1、6.3为什么它们平行教案 教学目标:1.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.2.理解和掌握平行线的判定公理及两个判定定理.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式.教学重点与难点:重点:平行线的判定定理、公理.难点:推理过程的规范化表达.教法与学法指导:教法:以培养学生自主学习能力为主,重点放在“合作与探究”上,让学生多观察、多动脑、大胆猜、勤探究,向学生提供更多的实践机会和交流空间,使学生在动脑、动手、动口的过程中获得分析和解决问题的能力,获得广泛的数学活动经验,成为学习的主人学法:自主探究与小组合作交流相结合课前准备:多媒体课件教学
2、过程:一、温故知新,自然引入师前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?生甲在同一平面内,不相交的两条直线就叫做平行线.生乙两条直线都和第三条直线平行,则这两条直线互相平行.生丙同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.师很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如
3、何证实呢?这节课我们就来探讨第三节:为什么它们平行.设计意图:复习上节课知识点,为本节课学习打好理论基础,进而引入新课二、师生互动,探究新知师看命题:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.师这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:如图,已知,1和2是直线a、b被直线c截出的同旁内角,且1与2互补,求证:ab.那如何证明这个题呢?我们来分析分析.师生共析要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:1与3是同位角,所以只需证明1=3,则a与b即平行.因为从图中可
4、知2与3组成一个平角,即2+3=180,所以:3=1802.又因为已知条件中有2与1互补,即:2+1=180,所以1=1802,因此由等量代换可以知道:1=3.师好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“”读作“因为”,“”读作“所以”)证明:1与2互补(已知)1+2=180(互补的定义)1+2=1801=1802(等式的性质)3+2=180(1平角=180)3=1802(等式的性质)1=1802,3=18021=3(等量代换)1=3ab(同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.这一定理可
5、简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)方括号内的“1+2=180”等,就是上面刚刚得到的“1+2=180”,在这种情况下,方括号内的这一步可以省略.(3)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.好,下面大家来议一议小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?生我认为他的作法对.他的作法可用上图来表示:CFE=45,BEF=45.因为BEF与FEA组成一个平角,所以FEA=180
6、BEF=18045=135.而CFE与FEA是同旁内角.且这两个角的和为180,因此可知:CDAB.师很好.从图中可知:CFE与FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.师生共析已知,如图,1和2是直线a、b被直线c截出的内错角,且1=2.求证:ab证明:1=2(已知)1+3=180(1平角=180)2+3=180(等量代换)2与3互补(互补的定义)ab(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:(出示投影片6.3 C)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.这一定理可以简单
7、说成:内错角相等,两直线平行.师刚才我们是应用判定定理“同旁内角互补,两直线平行”来证明这一定理的.下面大家来想一想借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生甲已知,如图,直线ac,bc.求证:ab.证明:ac,bc(已知)1=902=90(垂直的定义)1=2(等量代换)ba(同位角相等,两直线平行)生乙由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.设计意图: 通过学生独立解决问题,唤起学生已有的生活经验,为概念的引入做好铺垫,能够较好的体现数学的现实性,充分吸引学生的注
8、意力;同时在老师的层层设问中,总结出求线段的比的注意事项。从学生作为学习的主体这个角度来说,让学生当“小先生”从而实现“兵教兵”,便于充分发挥学生的主观能动性,易唤起学生共鸣。三、学以致用,知识反馈1.蜂房的底部由三个全等的四边形围成,每个四边形的形状如图617所示,其中=10928,=7032,试确定这三个四边形的形状,并说明你的理由.解:这三个四边形的形状是平行四边形.理由是:=10928=7032(已知)+=180(等式的性质)ABCD,ADBC(同旁内角互补,两直线平行)四边形ABCD是平行四边形(平行四边形的定义)设计意图:让学生应用本节课所学的知识解决相关的问题,查找掌握不牢固的地
9、方,进一步突出本节课的重点并加以巩固四、巩固提升,归纳总结这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.注意:1.证明语言的规范化.2.推理过程要有依据.3.“两条直线都和第三条直线平行,这两条直线互相平行”这个真命题以后证.设计意图:学生结合本节课的学习,谈谈自己的收获和感受五、达标检测,反馈矫正1已知:如图,1=2,且BD平分ABC求证:ABCD2已知:如图,AD是一条直线,1=65,2=115.求证:BECF设计意图:通过检测巩固当堂知识
10、并准确的掌握学生的课堂学习效果,以方便课下有针对性的做好辅导六、布置作业,课后促学必做题:课本 第232页 习题64 第1、2题选做题:课本 第232页 习题64 第3、4题 设计意图:通过不同层次的作业,让每一名学生都得到充分的提高,达到巩固新课知识,提高实际应用能力的目的板书设计:6.3为什么它们平行引入方法1方法2方法3学生板演区教学反思:学生初学证明时,对于证明中的每一步的因果关系很茫然,有的学生尽管头脑中对每一步的前因后果都比较清楚,但写出来的证明过程前后没有因果关系,这需要教师在学生刚接触证明题时,再三强调这一点。对于初学者而言,为了更好地掌握推理方法,要保证推理有根有据,上一步的因与下一步的果的因果关系明确,保证证明过程层次分明、条理清楚。不足之处:大部分学生能完成本课的学习任务,但是有少数几个基础较差的学生跟不上,教学过程第二个环节组织探究学生完成的情况不好,所以教师在引导和提问时,要注意问题的目的性和语言的技巧性;对于学生的看法和观点,要多使用鼓励性的语言,增强学生的自信心。