1、平行四边形的判定与两平行线间的距离1复习并巩固平行四边形的判定定理1、2;2学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究探究点一:对角线互相平分的四边形是平行四边形【类型一】 利用平行四边形的判定定理(3)判定平行四边形 已知,如图,AB、CD相交于点O,ACDB,AOBO,E、F分别是OC、OD中
2、点求证:(1)AOCBOD;(2)四边形AFBE是平行四边形解析:(1)利用已知条件和全等三角形的判定方法即可证明AOCBOD;(2)此题已知AOBO,要证四边形AFBE是平行四边形,根据全等三角形,只需证OEOF就可以了证明:(1)ACBD,CD.在AOC和BOD中,AOCBOD(AAS);(2)AOCBOD,CODO.E、F分别是OC、OD的中点,OFOD,OEOC,EOFO,又AOBO,四边形AFBE是平行四边形方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法熟练掌握平行四边形的判定定理是解决问题的关键变式训练:见
3、学练优本课时练习“课后巩固提升”第6题【类型二】 利用平行四边形的判定定理(3)证明线段或角相等 如图,在平行四边形ABCD中,AC交BD于点O,点E,F分别是OA,OC的中点,请判断线段BE,DF的位置关系和数量关系,并说明你的结论解析:根据平行四边形的对角线互相平分得出OAOC,OBOD,利用中点的意义得出OEOF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BEDF,BEDF.解:BEDF,BEDF.因为四边形ABCD是平行四边形,所以OAOC,OBOD.因为E,F分别是OA,OC的中点,所以OEOF,所以四边形BFDE是平行四边形
4、,所以BEDF,BEDF.方法总结:平行四边形的性质也是证明线段相等或平行的重要方法变式训练:见学练优本课时练习“课后巩固提升”第2题探究点二:平行线间的距离 如图,已知l1l2,点E,F在l1上,点G,H在l2上,试说明EGO与FHO的面积相等解析:结合平行线间的距离相等和三角形的面积公式即可证明证明:l1l2,点E,F到l2之间的距离都相等,设为h.SEGHGHh,SFGHGHh,SEGHSFGH,SEGHSGOHSFGHSGOH,SEGOSFHO.方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等变式训练:见学练优本课时练习“课堂达标
5、训练”第6题探究点三:平行四边形判定和性质的综合 如图,在直角梯形ABCD中,ADBC,B90,AGCD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.(1)求证:四边形DEGF是平行四边形;(2)如果点G是BC的中点,且BC12,DC10,求四边形AGCD的面积解析:(1)求出平行四边形AGCD,推出CDAG,推出EGDF,EGDF,根据平行四边形的判定推出即可;(2)由点G是BC的中点,BC12,得到BGCGBC6,根据四边形AGCD是平行四边形可知AGDC10,根据勾股定理得AB8,求出四边形AGCD的面积为6848.解:(1)AGDC,ADBC,四边形AGCD是平行四边形
6、,AGDC.E、F分别为AG、DC的中点,GEAG,DFDC,即GEDF,GEDF,四边形DEGF是平行四边形;(2)点G是BC的中点,BC12,BGCGBC6.四边形AGCD是平行四边形,DC10,AGDC10,在RtABG中,根据勾股定理得AB8,四边形AGCD的面积为6848.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键变式训练:见学练优本课时练习“课后巩固提升”第5题三、板书设计1平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离3平行四边形判定和性质的综合本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.