1、13.2 三角形全等的判定角边角【教学目标】:1.使学生理解ASA的内容,能运用ASA全等判定法来判定三角形全等进而说明线段或角相等;2.通过画图、实验、发现、应用的过程教学,树立学生知识源于实践用于实践的观念.使学生体会探索发现问题的过程.经历自己探索出AAS的三角形全等判定及其应用.【重点难点】:1.难点:三角形全等的判定法ASA和AAS及应用;2.重点:利用三角形全等的判定法,间接说明角相等或线段相等.【重点难点】:剪刀、卡纸.【教学过程】:一、复习1.什么叫做全等三角形,如何判定两个三角形全等?(能够完全重合的两个三角形叫做全等三角形.判定两个三角形全等的方法有:SAS).2.叙述SA
2、S的内容.3.已知:如图,请问再加上什么条件下,ABC,并说明理由.(,根据SAS).二、新授1.引入:请问到本节为止,我们探讨两个三角形满足三个条件的哪几种情况,情况如何呢?(如果两个三角形有两条边及其夹角分别对应相等,那么这两个三角形就一定全等.如果两个三角形的两边及其一边所对的角对应相等,那么这两个三角形不一定全等.)还有哪些情况还没有探讨呢?(如果两个三角形的两个角及一条边分别对应相等,或两个三角形的三条边对应相等,或两个三角形的三个角对应相等,这两个三角形一定全等吗?)本节我们探讨两个三角形的两个角及一条边分别对应相等,这两个三角形是否全等的课题.2.问题1:如果把已知一个三角形的两
3、角及一边,那么有几种可能的情况呢?(一种情况是两个角及两角的夹边;另一种情况是两个角及其中一角的对边.)每一种情况下得到的三角形都全等吗?3.请同学们动手做一个实验:同桌两位同学为一组.(1)共同商定画出任意一条线段AB,与两个角、()(2)两位同学各自在硬纸板上画线段的长等于商定的线段AB的长,在的同旁,画等于商定的,画等于商定的,设与相交于,便得.(3)用剪刀各自剪出,将同桌同学剪出的两个三角形重叠在一起发现了什么?其他各桌的同学是否也有同样的结论呢?同学们各抒己见后,总结:对于已知两个角和一条线段,以该线段为夹边,所画的三角形都是全等的 由此得到另一个判定全等三角形的简便方法: 如果两个
4、三角形的两个角及其夹边分别对应相等,那么这两个三角形全等简记为“角边角”或简记为(A.S.A.).4.问题2:试说明ASA全等判定法与相似三角形的判定法有什么类似的.(两个角对应相等的两个三角形相似,当这两个角的公共边相等时,这两个三角形的形状、大小都相同,即为全等三角形.)5.思考:如图,如果两个三角形有两个角及其中一个角的对边分别对应相等,那么这两个三角形是否一定全等?动手画一画:比如,你能画这个三角形吗?提示:这里的条件与实验中的条件有什么相同点与不同点?你能将它转化为实验中的条件吗?你画的三角形与同伴画的一定全等吗?现在两组同学按如果角所对的边为画,另两组同学换两个角和一条线段,试试看
5、,你们得出什么结论?同学们各抒己见后,总结:对于已知两个角和一条线段,以该线段为夹边,所画的三角形都是全等的 由此得到另一个判定全等三角形的简便方法: 如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等简写成:“角角边”或简记为(A.A.S.).6.问题3:你能说说ASA与AAS这两种全等判定法间的关系吗?(AAS判定法可由ASA判定法推导出来,如上图中,因为,由于,所以,于是ABC与DEF具备ASA全等.)7.范例如图,试说明ABCDCB,AB=DC.解:已知,又BC是公共边,由(ASA)全等判定法,可知ABCDCB所以AB=DC(全等三角形的对应边相等)三、巩固练习四、小结 用采访的形式访问一些同学,本节学到什么知识,对这些知识有什么体会,对本节的知识存在着哪些疑问.