1、3.1比例线段3.1.1比例的基本性质教学目标【知识与技能】1.理解比例的基本性质.2.能根据比例的基本性质求比值.3.能根据条件写出比例式或进行比例式的简单变形.【过程与方法】通过例题的学习,培养学生的灵活运用能力.【情感态度】建立初步的空间观念,发展形象思维;并通过有趣的图形,培养学生学习数学的兴趣.【教学重点】比例的基本性质.【教学难点】比例的基本性质及运用.教学过程一、情景导入,初步认知1.举例说明生活中存在大量形状相同,但大小不同的图形.如:照片、放电影中的底片中的图与银幕的像、不同大小的国旗、两把不同大小但都含有30角的三角尺等.2.美丽的蝴蝶身长与双翅展开后的长度之比约为0.61
2、8.一些长方形的画框,宽与长之比也设计成0.618,许多美丽的形状都与0.618这个比值有关.你知道0.618这个比值的来历吗?3.如何求两个数的比值?【教学说明】说明学习本章节的重要意义.二、思考探究,获取新知1.阅读与思考题(1)什么是两个数的比?2与-3的比;-4与6的比.如何表示?其比值相等吗?用小学学过的方法可说成什么?可写成什么形式?(2)比与比例有什么区别?(3)用字母a,b,c,d表示数,上述四个数成比例可写成怎样的形式?你知道内项、外项和第四比例项的概念吗?【归纳结论】如果两个数的比值与另两个数的比值相等,就说这四个数成比例.通常我们把a,b,c.d四个实数成比例表示成ab=
3、cd或,其中a,d叫作比例外项,b,c叫作比例内项.2.如果四个数a、b、c、d成比例,即,那么吗?反过来呢?【教学说明】引导学生利用等式的性质一起证明.由此,你能得到比例的基本性质吗?【归纳结论】比例的基本性质:如果,那么.3.已知四个数a、b、c、d成比例,即:,下列各式成立吗?若成立,请说明理由. ;.分析:(1)比较条件和结论的形式得到解题思路;(2)采用设比值较为简单.【教学说明】这三个小题反映了在比例式的变形中的两种常用方法:一是利用等式的基本性质;二是设比值.4.根据下列条件,求ab的值.(1)4a=5b,(2) .解:(1)4a=5b,.(2),8a=7b,.三、运用新知,深化
4、理解1.已知:x(x+1)=(1x)3,求x.解:根据比例的基本性质得,3.已知abc=135且a+2b-c=8,求a、b、c.解:设a=x,则b=3x,c=5x,x+23x-5x=8,2x=8,x=4,a=4,b=34=12,c=54=20.4.已知xy=34,xz=23,求xyz的值.解:因为xy=34=68,xz=23=69,所以xyz=689. 7.操场上有一群学生在玩游戏,其中男生与女生的人数比例是32,后来又有6名女同学参加进来,此时男生与女生人数的比为54,求原来有多少名男生和女生?【教学说明】引导学生用比例的性质解决问题.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业教材“习题3.1”中第1题.教学反思在处理比例的基本性质前先对比例的项的有关概念进行了讲解,对于比例的内项与外项,我是这样处理的,观察ab=cd,a,d在比例式的外部,所以称为比例外项,b,c在比例式的内部,所以称为比例内项,这样解释形象直观,学生容易理解.概念教学应该注意讲练结合,通过练习达到对概念的理解.