1、成比例线段教学目标【知识与技能】1.掌握比例线段的概念及其性质. 2.会求两条线段的比及判断四条线段是否成比例.3.知道黄金分割的定义,会判断某一点是否为一条线段的黄金分割点.【过程与方法】能够灵活运用比例线段的性质解决问题.【情感态度】感知知识的实际应用,增强对知识就是力量的客观认识,进一步加强理论联系实际的学习方法.【教学重点】能够灵活运用比例线段的性质解决问题.【教学难点】掌握黄金分割的概念,并能解决相关的实际问题.教学过程一、情景导入,初步认知1.1、2、4、8这四个数成比例吗?如何确定四个数成比例?2.比例基本性质是什么?【教学说明】复习回顾,引入新课.二、思考探究,获取新知1.如下
2、图,在方格纸上(设小方格边长为单位1)有ABC与ABC,它们的顶点都在格点上,试求出线段AB,BC,AC,AB,BC,AC的长度,并计算AB与AB,BC与BC,AC与AC的长度的比值.【教学说明】注意:(1)两线段是几何图形,可用它的长度比来确定;(2)度量线段的长,单位有多种,但求比值必须在同一长度单位下,比值一定是正数,比值与采用的长度单位无关.(3)表示方式与数字的比表示类同,但它也可以表示为ABCD.2.什么是比例线段?【归纳结论】在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段,简称比例线段.3.能否将一条线段AB分成不相等的两部分,使较短线段CB
3、与较长线段AC的比等于线段AC与线段AB的比呢?即,使得:. 【教学说明】引导学生用一元二次方程的知识解决问题.【教学说明】学生通过“计算、证明”等活动,得到并加深对黄金分割的理解.三、运用新知,深化理解1.已知四条线段a、b、c、d的长度,试判断它们是否成比例.(1)a=16cm,b=8cm,c=5cm,d=10cm;(2)a=8cm,b=5cm,c=6cm,d=10cm.(2)由已知得abcd,acbd,adbc,所以a、b、c、d四条线段不成比例.2.若ac=bd,则下列各式一定成立的是()【答案】 B3.已知C是线段AB的一个黄金分割点,则ACAB为()【答案】 D6.已知abc=43
4、2,且a+3b3c=14.(1)求a,b,c;(2)求4a3b+c的值.解:(1)设a=4k,b=3k,c=2k.a+3b3c=14,4k+9k6k=14,7k=14,k=2,a=8,b=6,c=4.(2)4a3b+c=3218+4=18.7.在ABC中,D是BC上一点,若AB=15 cm,AC=10 cm,且BDDC=ABAC,BDDC=2 cm,求BC. 解:略.8.在比例尺为12000的地图上测得AB两地间的图上距离为5cm,则AB两地间的实际距离为多少米?解:设两地之间的实际距离为x,则:,x=52000=10000cm=100m9.在人体躯干(脚底到肚脐的长度)与身高的比例上,肚脐是
5、理想的黄金分割点,即比例越接近0.618越给人以美感.张女士的身高为1.65米,身体躯干(脚底到肚脐的高度)为1.00米,那么她应选择约多高的高跟鞋看起来更美.(精确到十分位) 10.已知线段AB,求作线段AB的黄金分割点C,使ACBC.解:作法:(1)延长线段AB至F,使ABBF,分别以A、F为圆心,以大于等于线段AB的长为半径作弧,两弧相交于点G,连接BG,则BGAB,在BG上取点D,使BDAB,(2)连接AD,在AD上截取DEDB,(3)在AB上截取ACAE.如图,点C就是线段AB的黄金分割点.【教学说明】通过例题分析使学生进一步理解比例线段的应用和黄金分割的意义.使学生能更好地掌握本节
6、知识.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业教材“习题3.1”中第2、3、4 题.教学反思在学习本节内容之前,学生已理解比例线段的性质,初步掌握了比例线段在几何中的应用.本节课学习的黄金分割是一个新的概念,学生缺少这方面知识的积累,因此教学中在内容选择上,充分利用网络资源,选用大量图文作为背景,通过建筑、艺术、生活中的实例了解黄金分割,体现数学丰富的文化价值.同时,在应用中进一步理解线段的比、成比例线段等相关内容,在实际操作、思考、交流等过程中增强学生的实践意识.这节课的不足之处是教学内容比较多,因为时间关系,有关黄金分割的相关计算和应用学生练习得比较少,部分学生对这种类型的题目掌握不好.另外学生对黄金分割点的证明理解还不到位.