收藏 分销(赏)

春八年级数学下册 1.2 第1课时 勾股定理教案 (新版)湘教版-(新版)湘教版初中八年级下册数学教案.doc

上传人:s4****5z 文档编号:7610395 上传时间:2025-01-10 格式:DOC 页数:4 大小:106.50KB
下载 相关 举报
春八年级数学下册 1.2 第1课时 勾股定理教案 (新版)湘教版-(新版)湘教版初中八年级下册数学教案.doc_第1页
第1页 / 共4页
春八年级数学下册 1.2 第1课时 勾股定理教案 (新版)湘教版-(新版)湘教版初中八年级下册数学教案.doc_第2页
第2页 / 共4页
春八年级数学下册 1.2 第1课时 勾股定理教案 (新版)湘教版-(新版)湘教版初中八年级下册数学教案.doc_第3页
第3页 / 共4页
春八年级数学下册 1.2 第1课时 勾股定理教案 (新版)湘教版-(新版)湘教版初中八年级下册数学教案.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、12直角三角形的性质和判定()第1课时勾股定理1经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2掌握勾股定理,并应用它解决简单的计算题;(重点)3了解利用拼图验证勾股定理的方法(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形各组图形大小不一,但形状一致,结构奇巧你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理 已知:如图,在ABC中,ACB90,AB13cm,BC5cm,CDAB于D,求:(1)AC的长;(2)SABC;(3)CD的长解析:(

2、1)由于在ABC中,ACB90,AB13cm,BC5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出SABC;(3)根据CDABBCAC即可求出CD.解:(1)在ABC中,ACB90,AB13cm,BC5cm,AC12(cm);(2)SABCCBAC51230(cm2);(3)SABCACBCCDAB,CD(cm)方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,根据面积相等得出一个方程,再解这个方程即可变式训练:见学练优本课时练习“课堂达标训练”第6题【类型二】 分类讨论思想在勾股定理中的应用 在ABC中,AB15

3、,AC13,BC边上的高AD12,试求ABC周长解析:本题应分ABC为锐角三角形和钝角三角形两种情况进行讨论解:此题应分两种情况:(1)当ABC为锐角三角形时,如图所示,在RtABD中,BD9,在RtACD中,CD5,BC5914,ABC的周长为15131442;(2)当ABC为钝角三角形时,如图所示,在RtABD中,BD9.在RtACD中,CD5,BC954,ABC的周长为:1513432,ABC的周长为32或42.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意变式训练:见学练优本课时练习“课后巩固提升”第6题【类型三】 勾股定理与等腰三角形的综合 如图所

4、示,已知ABC中,B22.5,AB的垂直平分线分别交BC、AB于D、F点,BD6,AEBC于E,求AE的长解析:欲求AE,需与BD联系,连接AD,由线段垂直平分线的性质可知ADBD.可证ADE是等腰直角三角形,再利用勾股定理求AE的长解:如图所示,连接AD.DF是线段AB的垂直平分线,ADBD6,BADB22.5.ADEBBAD45,AEBC,DAE45,AEDE.由勾股定理得AE2DE2AD2,2AE2(6)2,AE6.方法总结:22.5虽然不是特殊角,但它是特殊角45的一半,所以经常利用等腰三角形和外角进行转换直角三角形中利用勾股定理求边长是常用的方法变式训练:见学练优本课时练习“课后巩固

5、提升”第3题探究点二:勾股定理与图形的面积 探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC绕其顶点A旋转90得直角三角形AED,所以BAE90,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE的面积等于RtBAE和RtBFE的面积之和根据图示写出证明勾股定理的过程;方法2:如图:任意的符合条件的两个全等的RtBEA和RtACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE的面积等于RtBAE和RtBFE的面积之和进行解答;方法2:根据ABC和RtACD的面积之和等于RtABD和BCD的面积之和解答解:方法1:S正

6、方形ACFDS四边形ABFESBAESBFE,即b2c2(ba)(ba),整理得2b2c2b2a2,a2b2c2;方法2:S四边形ABCDSABCSACD,S四边形ABCDSABDSBCD,即SABCSACDSABDSBCD,即b2abc2a(ba),整理得b2abc2a(ba),b2abc2aba2,a2b2c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理变式训练:见学练优本课时练习“课堂达标训练”第9题三、板书设计1勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2b2c2.2勾股定理的应用3勾股定理与图形的面积课堂教学中,要注意调动学生的积极性让学生满怀激情地投入到学习中,提高课堂效率勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,可设计拼图活动,并自制精巧的课件让学生从图形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服