资源描述
《鸡兔同笼》教学设计
李渡小学:刘吉灵
【教学内容】义务教育课程标准实验教科书《小学数学》四年级下册103-105页。
【教材分析】
(一)设计意图:
本教材向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
在现实生活中,“鸡兔同笼”的现象几乎是找不到的,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数他们的脚呢?直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,“鸡兔同笼”问题,实际是作为一种符合小学生心理特征的趣题,主要是构建一种数学模型,让我们通过寻找鸡兔腿数的变化规律,并采用有效的手段来解决类似的数学问题。教材编排上主要让学生尝试用不同方法解决“鸡兔同笼”问题,培养学生的解决问题的策略能力。
(二)设计思路:
遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。
在本课的设计上我灵活的安排了教材,把书上“26只脚”改为了“26条腿”意思差不多,但便于学生在后面分析叙述,好与“几只兔”、“几只鸡”区分。不然都是“只”,让学生听不明白。在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的接受能力和时间上的考虑,本来这节课讲的方法就很多,特别是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,与其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。
我认为本节课的重难点都应该是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡这里,用26-16=10条腿,这里应该说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,通过我和我们年级组其他教师的讨论,并看了很多教案和课例,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时可以直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”这里是把兔假设成了鸡,肯定应该是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。
【教学目标】
(一)知识与技能
1、初步认识鸡兔同笼的数学趣题,了解有关的数学史,感受中国文化的源远流长。能用画图法、列表法和假设法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。并能用不同的方法解决与鸡兔同笼的有关问题。通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
2、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
(二)过程与方法
1、通过列表举例、摆一摆、假设法等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。
2、让学生在自主探索、尝试、合作学习的过程中,经历用不同方法解决鸡兔同笼问题的过程,使学生体会用假设法解“鸡兔同笼”问题的一般性。
(三)情感、态度与价值观
培养学生的合作意识,在现实情境中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值,使学生感受古代数学问题的趣味性,提高学习数学的兴趣。
【教学重点】用假设法解决“鸡兔同笼”问题,假设法思想的渗透,并让学生选择合适的方法解决问题。
【教学难点】体会解决问题策略的多样化,培养学生分析问题、解决问题的能力,在解决问题的过程中培养学生的逻辑推理能力。
【教学准备】电脑课件一套,练习纸若干。
【教学方法】引导教学,学生小组合作。
【教学过程】
一、课前与学生交流,增加与学生的感情。
孩子们,还记得我吗?我是昨天和你们认识的刘老师,今天我们来一起玩一个游戏,老师说前面半句,你们接后面半句,好吗?
一只鸡( )条腿,两只鸡( )条腿,三只鸡( )条腿,
……
一只兔子( )条腿,两只兔子( )条腿,三只兔子( )条腿,……
恩,孩子们真棒,语音表达能力非常强,大家的表现非常好,希望大家在接下来的课堂上表现得更加完美,大家有信心吗?
现在,我们开始上课。
二、情境导入。
孩子们,你们看过《奔跑吧!兄弟》吗?(看过)
师:今天我给大家带来了《奔跑吧!兄弟》当中的一个片段。
请同学们在观看的时候,注意视频中出现了什么数学问题。请看大屏幕。
(课件出示视频,《奔跑吧!兄弟》中的有关鸡兔同笼的片段。)
孩子们,找到视频中的数学问题了吗?
同学们,这道问题实际上就是我国1500多年前的一本数学名著《孙子算经》中的一道趣题,叫做鸡兔同笼。
刚才里面的陈赫,他不能解决《鸡兔同笼》的这个问题,那么孩子们想帮他解决这个问题吗?
今天我们就一起来学习这类问题,板书——鸡兔同笼。(板书课题)。
【设计意图:激发学生探究兴趣,引出课题。】
三、探究新知。
我们一起来看看古书中是怎样描述这道题目的。(课件出示)
孩子们,你们能用自己的语言来把这道题目说一遍吗?
这道题中的数量比较大,我们解决起来比较困难,现在我们把数量改小。
出示课件 例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26条腿。鸡和兔各有几只?
请同学们把题目读一遍。
同学们,你们能猜出有多少鸡和多少只兔吗?
(快速的猜,请3个同学来完成。)
那么到底他们猜得对不对呢?
我们能不能用一种方法把所有的可能都表示出来呢?
现在有请同学们拿出老师发给你们的一号作业纸,并且填好。
学生活动:学生单独完成。
教师活动:教师巡视,对有困难的学生进行适当的帮助。
学生完成后,集体交流阶段。学生汇报探究的方法和结论:
1、列表法:(展示学生所列表格)
学生一边汇报,老师一边完善下面的表格。(课件出示)
鸡的只数
8
7
6
5
4
3
2
1
0
兔的只数
0
1
2
3
4
5
6
7
8
一共的腿数
16
18
20
22
24
26
28
30
32
表格填完后,问:你能从表格中找到正确答案吗?
【设计意图:培养学生有序思考,严谨推理,初步渗透假设思想。】
师评价:“像你们这样,采用列表的方法,不重复、不遗漏的写出所有可能的答案。这种逐一列举的方法在数学中也称为“列表法”。
那么,还有没有其他的方法来解决这类题目呢?
孩子们想不想学习一种新的数学方法?(想)
今天呀!我们就一起来学习一种新的数学方法——假设法。
板书:假设法。
2、假设法。
孩子们,你们手里有26根小棒,代表鸡和兔子一共有26条腿。
现在请同学们把这26条腿,分别摆在这8个头的下面。
孩子们,请你们一边摆一边思考以下问题:(课件出示)
边摆边思考:1、假设全部是鸡,一共要摆多少条腿?
2、还剩下多少条腿?
3、剩下的腿是谁的,该怎么摆?
现在请同学们拿出你们的二号作业纸,纸上的8个圆圈就代表8只动物的头。
学生活动:学生小组活动。
教师活动:教师巡视,对有困难的小组进行适当的帮助。
小组活动充分后进入小组汇报、集体交流阶段。
学生汇报探究的方法和结论:
给每只动物先摆上2条腿(也就是都看成鸡),这样才一共摆了16条腿,手里还剩下10条腿。
问:剩下的这10条腿又会是谁的呢?为什么会剩下这10条腿呢?
生答:兔子的。因为一只兔子比一只鸡多了2条腿,我们手里还剩下10条腿,就要把 10÷2=5只鸡换成5只兔子。
答案也就是,笼子里面有3只鸡和5只兔子。
老师和同学一起验证答案的正确性。
孩子们,我们把刚才摆的过程再一起从述一遍。
(课件展示)老师一边展示课件,一边引导孩子把刚才的过程再说一遍。【设计意图:帮助理解“鸡兔同笼”问题的本质特征,为后面的列算式作铺垫。】
同学们你们能把刚刚的这个思路和过程用算式表示出来吗?
板书:方法一:假设全是鸡。
问:全部假设成鸡,共有多少条腿?
8×2=16(条)……假设全是鸡
说明:(假设全是鸡,则总共只有16条腿,和实际不相符合。)
26-16=10(条)……矛盾量
问:这个算式表示什么?
(实际的26条腿比假设的16条腿多了10条腿。)
问:为什么会多了10条腿?这10条腿又是谁的呢?(兔子)
4-2=2(条)……原因
问:这个算式表示什么?
(每只兔子比每只鸡多2条腿)
那么,多少只兔子才能多出这10条腿呢?
10÷2=5(只)……兔
(5只兔子才能多出这10条腿)
问:现在求出来的是什么?(兔子)
那么,鸡有多少只?
8-5=3(只)……鸡
答:兔有5只,鸡有3只。
然后喊学生同桌交流。
先让孩子出示全部的算式,并且喊学生一一解答每个算式的意思,完整的说出整个思考过程。
到底这个结果对不对呢?我们一起来验证一下。
同学们:我们刚刚全部假设成鸡来完成了这道题目。
那么同学们会全部假设成兔子来计算这道题目吗?
请同学们在练习本上,单独完成。
教师活动:教师巡视,对有困难的学生进行适当的帮助。
学生汇报结果,全班统一订正。
教师板书:方法二:假设8只都是兔,
8×4=32(条)……假设全是兔子
说明:(假设全是兔子,则总共有32条腿,和实际的不相符合。)
32-26=6(条)……矛盾量
(实际的比假设的少了6条腿。)
问:这6条腿又是谁的?
4-2=2(条)……原因 (每只鸡比每只兔子少2条腿)
6÷2=3(只)……鸡
(那么多少只鸡才能少这6条腿?)
8-3=5(只)……兔子
答:兔子有5只,鸡有3只。
【设计意图:帮助理解“鸡兔同笼”问题的本质特征,假设思想。】
现在同学们会利用我们刚刚学习的方法来解决《奔跑吧!兄弟》中陈赫遇到的那道题目了吗?
四、知识运用
出示题目:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?
请同学们在练习本上,单独完成。
学生选择自己喜欢的方法来完成,(全部假设成鸡或者全部假设成兔子,选择其中一种)。
学生活动,学生单独完成这道题目。
教师巡视,对有困难的学生进行适当的帮助。
全班统一汇报。
生活中有类似鸡兔同笼的问题吗?
(课件出示,做一做的第2题)
2、 新星小学“环保卫士”小分队12人参加植树活动。男生每人栽了3棵树,女生每人栽了2棵树,一共栽了32棵树。男、女生各有几人?
同学们自由完成,可以是单独,也可以是小组完成。
学生完成后,全班订正。
五、全课总结
孩子们:通过这节课的学习,你们都有什么收获呢?
同学们,这节课,我们一起用列表法和假设法解决了我国古代著名的“鸡兔同笼”问题,我们还运用这些方法解决了我们生活中的问题,同学们的水平是越来越高了!而且从中得到了很多的数学思想。其实我们的数学学习就应该是这样的——在不断的思考中逐渐深入……希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。
【教学板书】
鸡兔同笼
一、假设全部是鸡 二、假设全部是兔
8×2=16(条) 8×4=32(条)
26-16=10(条) 32-26=6(条)
4-2=2(条) 4-2=2(条)
10÷2=5(只)……兔 6÷2=3(只)……鸡
8-5=3(条)……鸡 8-3=5(条)……兔
【教学反思】
展开阅读全文