资源描述
第2章 分式复习
教学目标
1 使学生系统了解本章的知识体系及知识内容;
2 进一步了解分式的基本性质、分式的运算法则以及整数指数幂,会熟练地进行分式的运算。
重点、难点
重点:梳理知识内容,形成知识体系。
难点:熟练进行分式的运算。
教学过程
一 知识结构与知识要点
1浏览第2章目录,阅读p 61---63 复习与小结
2 这章学习了哪些内容?(学生交流)
教师投影本章知识结构图
3 你还记得下面知识要点吗?
(1)什么叫分式?
设f、g都是整式,且g中含有字母,我们把f除以g所得的商记作,把叫做分式。
(2)分式基本性质
设h0,则即:分式的分子与分母同时乘以一个非零的多项式,所得分式与原分式相等;分式的分子分母同时约去公因式,所得分式与原分式相等。
(3)分式的符号变换法则是什么?
形象的理解为:分式的分子分母的符号可以移动
(4)分式的运算法则
①分式的乘法:可以先把分子、分母分别相乘再约分,也可以先约分再分子、分母分别相乘。
②分式的除法:,分式除以分式,把被除式的分子分母颠倒位置后,与被除式相乘。
③分式加减法:同分母:,分母不变,分子相加减。
异分母:先通分,化为同分母的分子然后相加减。
怎样找最简公分母?系数:取各分母的系数最少公倍数。字母因式:取所有的,指数最高的。
(5)整数指数幂的运算法则
①同底数的幂的除法:
②零次幂和负整数指数幂:,,
③整数指数幂有哪些运算法则:设a0,m,n都是整数,则:
二 例题精讲
例1 填空:当x=_____,分式无意义。当x=_____时,=0
提醒:分式值为零除了分子为零外,还需要分母不等于零。而分式有意义的条件只要分母不等于零,与分子无关。
思考:分式在什么条件下值为零呢?
例2 请你先化简,再选一个你喜欢的a的值代入求值。
解:
估计学生会有人选a=1,这时可以让学生交流,这样的取值是否合适。
例3 已知。
解法1:
解法2:三 课堂练习,巩固提高
1若分式的值为0,那么x的值为____.
2化简:
四 反思小结,拓展提高
这节课你有什么收获?
五 作业P63—64 A 1,2,3,B 1
展开阅读全文