收藏 分销(赏)

云南省曲靖市麒麟区九年级数学上册 22.2.3《公式法》教案 新人教版.doc

上传人:s4****5z 文档编号:7419996 上传时间:2025-01-03 格式:DOC 页数:7 大小:189.50KB
下载 相关 举报
云南省曲靖市麒麟区九年级数学上册 22.2.3《公式法》教案 新人教版.doc_第1页
第1页 / 共7页
云南省曲靖市麒麟区九年级数学上册 22.2.3《公式法》教案 新人教版.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述
22.2.3 公式法 教学内容 1.一元二次方程求根公式的推导过程; 2.公式法的概念; 3.利用公式法解一元二次方程. 教学目标 理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程. 复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程. 重难点关键 1.重点:求根公式的推导和公式法的应用. 2.难点与关键:一元二次方程求根公式法的推导. 教学过程 一、复习引入 (学生活动)用配方法解下列方程 (1)6x2-7x+1=0 (2)4x2-3x=52 (老师点评) (1)移项,得:6x2-7x=-1 二次项系数化为1,得:x2-x=- 配方,得:x2-x+()2=-+()2 (x-)2= x-=± x1=+==1 x2=-+== (2)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 二、探索新知 如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1=,x2= 分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+x=- 配方,得:x2+x+()2=-+()2 即(x+)2= ∵b2-4ac≥0且4a2>0 ∴≥0 直接开平方,得:x+=± 即x= ∴x1=,x2= 由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x=就得到方程的根. (2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程. (1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a=2,b=-4,c=-1 b2-4ac=(-4)2-4×2×(-1)=24>0 x= ∴x1=,x2= (2)将方程化为一般形式 3x2-5x-2=0 a=3,b=-5,c=-2 b2-4ac=(-5)2-4×3×(-2)=49>0 x= x1=2,x2=- (3)将方程化为一般形式 3x2-11x+9=0 a=3,b=-11,c=9 b2-4ac=(-11)2-4×3×9=13>0 ∴x= ∴x1=,x2= (3)a=4,b=-3,c=1 b2-4ac=(-3)2-4×4×1=-7<0 因为在实数范围内,负数不能开平方,所以方程无实数根. 三、巩固练习 教材P42 练习1.(1)、(3)、(5) 四、应用拓展 例2.某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题. (1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程. (2)若使方程为一元二次方程m是否存在?若存在,请求出. 你能解决这个问题吗? 分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0. (2)要使它为一元一次方程,必须满足: ①或②或③ 解:(1)存在.根据题意,得:m2+1=2 m2=1 m=±1 当m=1时,m+1=1+1=2≠0 当m=-1时,m+1=-1+1=0(不合题意,舍去) ∴当m=1时,方程为2x2-1-x=0 a=2,b=-1,c=-1 b2-4ac=(-1)2-4×2×(-1)=1+8=9 x= x1=,x2=- 因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-. (2)存在.根据题意,得:①m2+1=1,m2=0,m=0 因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0 所以m=0满足题意. ②当m2+1=0,m不存在. ③当m+1=0,即m=-1时,m-2=-3≠0 所以m=-1也满足题意. 当m=0时,一元一次方程是x-2x-1=0, 解得:x=-1 当m=-1时,一元一次方程是-3x-1=0 解得x=- 因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-. 五、归纳小结 本节课应掌握: (1)求根公式的概念及其推导过程; (2)公式法的概念; (3)应用公式法解一元二次方程; (4)初步了解一元二次方程根的情况. 六、布置作业 1.教材P45 复习巩固4. 2.选用作业设计: 一、选择题 1.用公式法解方程4x2-12x=3,得到( ). A.x= B.x= C.x= D.x= 2.方程x2+4x+6=0的根是( ). A.x1=,x2=;B.x1=6,x2=;C.x1=2,x2=;D.x1=x2=- 3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是( ). A.4 B.-2 C.4或-2 D.-4或2 二、填空题 1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________. 2.当x=______时,代数式x2-8x+12的值是-4. 3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____. 三、综合提高题 1.用公式法解关于x的方程:x2-2ax-b2+a2=0. 2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-,x1·x2=;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值. 3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时元收费. (1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示) (2)下表是这户居民3月、4月的用电情况和交费情况 月份 用电量(千瓦时) 交电费总金额(元) 3 80 25 4 45 10 根据上表数据,求电厂规定的A值为多少?
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服