资源描述
《1.3.1有理数的加法》教案(第2课时)
教学任务分析
教
学
目
标
知识与技能
过程与方法
① 培养学生的观察能力和思维能力.
②经历对有理数的运算,领悟解决问题应选择适当的方法.
情感态度与
价值观
在数学学习中获得成功的体验,提高学生学习数学的兴趣
教学重点
加法交换律和结合律,及其合理、灵活的运用
教学难点
合理运用运算律
教学过程设计
教学过程
备 注
[活动1]
[活动2]
合作交流,探究新知
体验 1.自己任举两个数(至少有一种是负数),分别填入下列□和○中,并比较它们的运算结果,你发现了什么?
□+○和○+□
发现:对任选择的数,都有□+○=○+□,即小学里学过的加法交换律在有理数范围内仍是成立的.
体验 2.任选三个有理数(至少有一个是负数),分别填入下列□,○,◇内,并比较它们的运算结果.
(□+○)+◇和□+(○+◇)
发现都有(□+○)+◇=□+(○+◇),这就是说,小学的加法结合律,在有理数范围内都是成立的.
小结 有理数的加法仍满足交换律和结合律.
加法交换律:两个数相加,交换加数的位置,和不变.用式子表示成a+b=a+b.
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,用式子表示成(a+b)+c=a+(b+c)
注意:〔1〕式子中的字母分别表示任意的一个有理数.(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。
(2)在同一个式子中,同一个字母表示同一个数.
[活动3]
讨论交流,解决问题
例1计算:
(1)16+(-25)十24+(-35);
(2)(-2.48)+(+4.33)+(-7.52)+(-4.33).
师生共同分析完成,如第(1)题,教师板书:
解:(1)原式=16+24+ (-25)十(-35)(此时教师问:依据是什么?)
=(16+24)+[(-25)+(-35)〕(依据是什么?)
=40+(一60)
=20
解题后反思:
先让学生按从左到右的顺序依次相加,算一算,再让学生说一说,通过这两道题目的计算,你有什么体会?(使用运算律能使运算简便,简化运算的方法有:把正数和负数分别相加,有相反毅的先把相反数相加,能凑整的先凑整等等).
例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下:
91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1
10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?
这题可这样处理:I
1,让学生估计一下总重量是超过标准重量还是不足标准重量.
2,让学生思考如何计算,学生能给教科书提供的解法1 .即先10袋小麦的总质量,再计算总计超过多千克。
此时可组织学生讨论:有没有不同的解法?(此时,如果已有学生提出教材的解法2的思路,则请学生讨论这种解法的合理性。
并比较这两种解法。
(这是一个有理数应用的例子,这两种解法都应让学生掌握,尤其是解法2更是体现学习有理数加法运算的必要性。
[活动4]
一、练习
1、 课本P20练习第1、2题。
2、飞机的飞行高度是2200米,上升500米,又下降600米,这时飞行高度是多少?
3、某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)
+15,+14,-3,-11,+10,-12,+4,-15,+16,-18
(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?
(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?
4、把-5,-4,-3,-2,-1,0,1,2,3这些数填入下图的圆圈中,使得每条直线上数字之和都为0.
二、小结
三、作业
课本P24习题1.3第2、7、8、9、10题。
展开阅读全文