资源描述
山东省日照市九年级数学《22.2降次——解一元二次方程》教案(4)
教学内容
本节课主要学习用根的判别式b2-4ac来判别ax2+bx+c=0(a≠0)的根的情况及其运用。
教学目标
知识技能
掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用.
数学思考
从具体到一般,给出三个结论并应用它们解决一些具体题目。
解决问题
用根的判别式b2-4ac来判别ax2+bx+c=0(a≠0)的根的情况.
情感态度
继续体会由未知向已知转化的思想方法.
重难点、关键
重点:理解一元二次方程的根的判别式,并能用判别式判定根的情况.
难点:用根的判别式b2-4ac来判别ax2+bx+c=0(a≠0)的根的应用.
关键:从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.
教学准备
教师准备:制作课件,精选习题
学生准备:复习有关知识,预习本节课内容
教学过程
一、 复习引入
【问题】
用公式法解下列方程,并说明根的情况(三位同学到黑板上作)
(1)2x2-3x=0 (2)3x2-2x+1=0 (3)4x2+x+1=0
老师点评:
(1)b2-4ac=9>0,有两个不相等的实根;
(2)b2-4ac=12-12=0,有两个相等的实根;
(3)b2-4ac=│-4×4×1│=<0,方程没有实根
【活动方略】
教师演示课件,给出题目.
学生独立利用公式法解上述3个方程,然后观察方程的解的情况,观察解题过程,总结一元二次方程根的规律和的关系
【设计意图】
复习用公式法解一元二次方程,为继续学习根的判别式作好铺垫.
二、 探索新知
【问题情境】
从前面的具体问题,我们已经知道b2-4ac>0(<0,=0)与根的情况,现在你把这个问题一般化,从求根公式的角度来分析来得出结论。
求根公式:x=,当b2-4ac>0时,根据平方根的意义,等于一个具体数,所以一元一次方程的x1=≠x1=,即有两个不相等的实根.当b2-4ac=0时,根据平方根的意义=0,所以x1=x2=,即有两个相等的实根;当b2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.
因此,(结论)(1)当b2-4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1=,x2=.
(2)当b-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2=.
(3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.
【活动方略】
学生活动:
学生通过思考,归纳结论
老师活动:
在学生讨论时,注意引导学生根据平方根的意义,得出结论。
【设计意图】
推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.
【应用】
例:不解方程,判定方程根的情况
(1)16x2+8x=-3 (2)9x2+6x+1=0
(3)2x2-9x+8=0 (4)x2-7x-18=0
分析:不解方程,判定根的情况,只需用b-4ac的值大于0、小于0、等于0的情况进行分析即可.
解:(1)化为16x2+8x+3=0
这里a=16,b=8,c=3,b2-4ac=64-4×16×3=-128<0
所以,方程没有实数根.
(2)a=9,b=6,c=1,
b2-4ac=36-36=0,
∴方程有两个相等的实数根.
(3)a=2,b=-9,c=8
b2-4ac=(-9)2-4×2×8=81-64=17>0
∴方程有两个不相等的实根.
(4)a=1,b=-7,c=-18
b2-4ac=(-7)2-4×1×(-18)=121>0
∴方程有两个不相等的实根.
【活动方略】
学生活动:
学生首先独立思考,自主探索,然后交流
教师活动:
在学生解决问题的过程中,适时让学生讨论解决遇到的问题。
【设计意图】
主体探究、通过解几个具体的问题,进一步体会一元二次方程的根与的关系.
三、 反馈练习
不解方程判定下列方程根的情况:
(1)x2+10x+26=0 (2)x2-x-=0
(3)3x2+6x-5=0 (4)4x2-x+=0
(5)x2-x-=0 (6)4x2-6x=0
(7)x(2x-4)=5-8x
【活动方略】
学生独立思考、独立解题.
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)
【设计意图】
检查学生对基础知识的掌握情况.
四、 应用拓展
例1:某养鸡厂的矩形鸡舍长靠墙.现在有材料可以制作竹篱笆13米,若欲围成20平方米的鸡舍,鸡舍的长和宽应是多少?能围成22平方米的鸡舍吗,若可以求出长和宽,若不能说明理由.
【活动方略】
学生活动:
学生在思考的基础上分组讨论,利用一元二次方程的知识解决上述问题。
教师关注:
(1)学生是否能够迅速设出未知数,列出方程;
(2)学生是否能够准确判断问题的答案;
(3)学生能否选择合理的解决问题的方案.
例2:若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).
分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.
解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.
∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0
a<-2
∵ax+3>0即ax>-3
∴x<-
∴所求不等式的解集为x<-
【活动方略】
教师活动:操作投影,将例题显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】
应用根的判别式与根的情况解题,深刻体会一元二次方程的根与的关系.
五、 小结作业
1.问题:
本节课学到了哪些知识?有什么体会?
本节课应掌握:
b2-4ac>0一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2-4ac=0 一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2-4ac<0一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用.
2.作业:课本P45 习题22.2 第9、11、12题
【活动方略】
教师引导学生归纳小结,学生反思学习和解决问题的过程.
学生独立完成作业,教师批改、总结.
【设计意图】通过归纳总结,培养学生的归纳总结能力,通过课外作业,使学生进一步理解,内化知识。
展开阅读全文