收藏 分销(赏)

辽宁省开原五中八年级数学《2.2 平方根》教学设计.doc

上传人:s4****5z 文档编号:7417950 上传时间:2025-01-03 格式:DOC 页数:6 大小:180KB 下载积分:10 金币
下载 相关 举报
辽宁省开原五中八年级数学《2.2 平方根》教学设计.doc_第1页
第1页 / 共6页
辽宁省开原五中八年级数学《2.2 平方根》教学设计.doc_第2页
第2页 / 共6页


点击查看更多>>
资源描述
第二章 实数 2. 平方根(一) 一、学生起点分析 学生已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.这节课的教学,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性. 二、教学任务分析 本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,因此确定本节的教学目标如下: ·知识与技能目标 1.了解算术平方根的概念,会用根号表示一个数的算术平方根. 2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根. 3.了解算术平方根的性质. ·过程与方法目标 1.在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力. 2.在合作交流等活动中,培养他们的合作精神和创新意识. ·情感与态度目标 1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲. 教学重点: 了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根. 教学难点: 对算术平方根的概念和性质的理解. 三、教法学法 教学方法:讲授法. 课前准备: 教具:教材,多媒体课件,电脑. 学具:教材,笔,练习本. 四、教学过程: 本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置. 本节课教学流程为: 问题情境 初步探究 反馈练习 学习小结 作业布置 深入探究 第一环节:问题情境 方法一:问题导入 1 1 1 1 1 A B O C D E x y z w 内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大的正方形,那么有a2=2,a= ,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们一起来学习. 方法二:问题导入 内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空: x2= ,y2= ,z2= ,w2= . 意图:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性. 效果:能表示x2=2,y2=3,z2=4,w2=5;能求得z=2,但不能求得x、y、w的值. 说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二。 第二环节:初步探究 内容1:情境引出新概念 x2=2,y2=3,z2=4,w2=5,已知幂和指数,求底数x,你能求出来吗? 意图:让学生体验概念形成过程,感受到概念引入的必要性. 效果:学生可以估算出x,y是1到2之间的数,w是2到3之间的数但无法表示x、y、w,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方. 说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x,你能求出来吗?” 内容2:在上面思考的基础上,明晰概念: 一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,记为“”,读作“根号a”.特别地,我们规定0的算术平方根是0,即. 意图:对算术平方根概念的认识. 效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的. 内容3:简单运用 巩固概念 例1 求下列各数的算术平方根: (1)900; (2)1; (3); (4)14. 意图:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是. 效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根. 答案:解:(1)因为302=900,所以900的算术平方根是30,即; (2)因为12=1,所以1的算术平方根是1,即; (3)因为,所以 的算术平方根是, 即; (4)14的算术平方根是. 内容4:回解课堂引入问题 x2=2,y2=3,w2=5,那么x=,y=,w=. 第三环节:深入探究 内容1:例2 自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间? 意图:用算术平方根的知识解决实际问题. 效果:学生多能利用等式的性质将h=4.9t2进行变形,再用求算术平方根的方法求得题目的解. 解:将h=19.6代入公式得h=4.9 t2, t2 =4,所以t = =2(秒) . 即铁球到达地面需要2秒. 说明:此题是为得出下面的结论作铺垫的. 内容2:观察我们刚才求出的算术平方根有什么特点. 意图:让学生认识到算术平方根定义中的两层含义:中的a是一个非负数,a的算术平方根也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性. 效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根. 第四环节:反馈练习 一、填空题: 1.若一个数的算术平方根是,那么这个数是 ; 2.的算术平方根是 ; B C A 3.的算术平方根是 ; 4.若,则= . 二、求下列各数的算术平方根: 36,,15,0.64,,,. 三、如图,从帐篷支撑竿AB的顶部A向地面拉一根绳子AC固定帐篷.若绳子的长度为5.5米,地面固定点C到帐篷支撑竿底部B的距离是4.5米,则帐篷支撑竿的高是多少米? 答案:一、1.7;2. ;3. ;4.16;二、6;;;0.8;;;1; 三、解:由题意得 AC=5.5米,BC=4.5米,∠ABC=90°,在Rt△ABC中,由勾股定理得(米).所以帐篷支撑竿的高是 米. 意图:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程. 效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评。 第五环节:学习小结 内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容: (1)算术平方根的概念,式子中的双重非负性:一是a≥0,二是≥0. (2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根. (3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根. 意图:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质. 第六环节:作业布置 习题2.3
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服