收藏 分销(赏)

春八年级数学下册 第18章 平行四边形 18.1 平行四边形的性质教案 (新版)华东师大版-(新版)华东师大版初中八年级下册数学教案.doc

上传人:s4****5z 文档编号:7412934 上传时间:2025-01-03 格式:DOC 页数:7 大小:853.50KB
下载 相关 举报
春八年级数学下册 第18章 平行四边形 18.1 平行四边形的性质教案 (新版)华东师大版-(新版)华东师大版初中八年级下册数学教案.doc_第1页
第1页 / 共7页
春八年级数学下册 第18章 平行四边形 18.1 平行四边形的性质教案 (新版)华东师大版-(新版)华东师大版初中八年级下册数学教案.doc_第2页
第2页 / 共7页
春八年级数学下册 第18章 平行四边形 18.1 平行四边形的性质教案 (新版)华东师大版-(新版)华东师大版初中八年级下册数学教案.doc_第3页
第3页 / 共7页
春八年级数学下册 第18章 平行四边形 18.1 平行四边形的性质教案 (新版)华东师大版-(新版)华东师大版初中八年级下册数学教案.doc_第4页
第4页 / 共7页
春八年级数学下册 第18章 平行四边形 18.1 平行四边形的性质教案 (新版)华东师大版-(新版)华东师大版初中八年级下册数学教案.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、181平行四边形的性质第1课时平行四边形的边、角的性质教学目标一、基本目标1理解平行四边形的概念2掌握平行四边形边、角的性质,理解平行线之间的距离处处相等3利用平行四边形边、角的性质解决问题二、重难点目标【教学重点】平行四边形的概念,平行四边形的性质定理1和2.【教学难点】利用平行四边形边、角的性质解决问题教学过程环节1自学提纲、生成问题【5 min阅读】阅读教材P72P76的内容,完成下面练习【3 min反馈】1有两组对边分别平行的四边形叫做平行四边形平行四边形的对边相等,对角相等,邻角互补平行线之间的距离处处相等2平行四边形是中心对称图形,但不是轴对称图形3已知平行四边形ABCD中,A80

2、,你能求出其他各角的度数吗?解:在ABCD,CA80.ABCD,AD180,D180A100.又BD,B100.4在平行四边形ABCD中,AB8,周长等于24,求其余三条边的长解:ABCD的周长等于24,ABCD,ADBC,ABBC12,BC12AB4.AB8,CDAB8,ADBC4.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】在平行四边形ABCD中,已知AB12,则B的度数是()A45B.90C120D135【互动探索】(引发学生思考)四边形ABCD是平行四边形,ADBC,AB180,AB12,B180120.【答案】C【互动总结】(学生总结,老师点评)此题考查了平行四边形的性

3、质注意掌握平行四边形的邻角互补定理的应用是解此题的关键【例2】如图,在四边形ABCD中,BD,12.求证:四边形ABCD是平行四边形【互动探索】(引发学生思考)根据三角形内角和定理求出DACACB,根据平行线的判定推出ADBC,ABCD,根据平行四边形的定义推出即可【证明】1BACB180,2DCAD180,BD,12,DACACB,ADBC.12,ABCD,四边形ABCD是平行四边形【互动总结】(学生总结,老师点评)平行四边形的定义是判断一个四边形是平行四边形的重要方法活动2巩固练习(学生独学)1已知平行四边形ABCD中,A110,则B的度数为 (D)A110B.100C80D702在平行四

4、边形ABCD中,若AB、BC、CD三条边的长分别为(x2)、(x2)和4,则这个平行四边形的周长是24.3已知平行四边形相邻两个内角相差40,则该平行四边形中较小内角的度数是70.活动3拓展延伸(学生对学)【例3】如图,在ABCD中,DE、AE分别为ADC、BAD的平分线,与BC交于点E.求证:AD2CD【互动探索】利用角平分线的性质及平行线的性质证明CEDCDE,BAEAEB得到CECD,BEAB等量代换得到结论【证明】四边形ABCD是平行四边形,ADBC,ABCD,ADBC,ADECED,DAEAEB.DE、AE分别是ADC、BAD的平分线,ADECDE,DAEBAE,CEDCDE,BAE

5、AEB,CECD,BEAB,ADBCCEBECDAB2CD.【互动总结】(学生总结,老师点评)熟练掌握平行四边形及角平分线的性质是解题的关键环节3课堂小结,当堂达标(学生总结,老师点评)平行四边形的对边相等平行四边形的对角相等,邻角互补练习设计请完成本课时对应练习!第2课时平行四边形的对角线的性质教学目标一、基本目标1掌握平行四边形对角线互相平分的性质2利用平行四边形对角线互相平分解决有关问题二、重难点目标【教学重点】平行四边形的性质定理3.【教学难点】利用平行四边形对角线互相平分解决有关问题教学过程环节1自学提纲、生成问题【5 min阅读】阅读教材P77P79的内容,完成下面练习【3 min

6、反馈】1平行四边形的对角线互相平分2在下列性质中,平行四边形不一定具有的是 (C)A对边相等B.对边平行C对角互补D内角和为3603若平行四边形的两条对角线长为6 cm和16 cm,则下列长度的线段可作为平行四边形边长的是(B)A5 cm B8 cm C12 cm D16 cm环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】求证:平行四边形的对角线互相平分【互动探索】(引发学生思考)首先根据题意画出图形,再写出命题的已知和求证,最后通过证明三角形全等即可证明命题是正确的【解答】已知:如图,平行四边形ABCD的对角线AC、BD相交于点O.求证:OAOC,OBOD.证明:四边形ABCD是

7、平行四边形,ADBC,ADBC,12.在AOD和COB中,AODCOB,OAOC,OBOD.【互动总结】(学生总结,老师点评)此题主要考查了平行四边形的性质以及全等三角形的判定和性质,解题的关键是熟记平行四边形的各种性质以及全等三角形的各种判定方法【例2】如图,ABCD的周长为60 cm,对角线AC、BD相交于点O,AOB的周长比DOA的周长长5 cm,求这个平行四边形各边的长【互动探索】(引发学生思考)平行四边形周长为60 cm,即相邻两边之和为30 cm.AOB的周长比DOA的周长长5 cm,而AO为公共边,OBOD,因而由题可知AB比AD长5 cm,进一步解答即可【解答】四边形ABCD是

8、平行四边形,OBOD,ABCD,ADBC.AOB的周长比DOA的周长长5 cm,ABAD5 cm.又ABCD的周长为60 cm,ABAD30 cm,则ABCD cm,ADBC cm.【互动总结】(学生总结,老师点评)平行四边形被两条对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差活动2巩固练习(学生独学)1平行四边形具有的特征是 (C)A四个角都是直角B对角线相等C对角线互相平分D四边相等2如果ABCD的周长为40 cm,ABC的周长为25 cm,则对角线AC的长是 (A)A5 cmB15 cmC6 cmD16 cm3如图,ABCD中,O为对角线AC和BD的交点,BEAC,DF

9、AC,垂足分别为E、F.求证:OEOF.证明:四边形ABCD是平行四边形,OBOD.又BEAC,DFAC,OFDOEB.又DOFBOE,BOEDOF.OEOF.活动3拓展延伸(学生对学)【例3】如图,平行四边形ABCD的对角线相交于点O,且ABAD,过点O作OEBD,交BC于点E,若CDE的周长为10,则平行四边形ABCD的周长是多少?【互动探索】由平行四边形的性质得出ABCD,BCAD,OBOD,再根据线段垂直平分线的性质得出BEDE,由CDE的周长得出BCCD10,即可求出平行四边形ABCD的周长【解答】四边形ABCD是平行四边形,ABCD,BCAD,OBOD.OEBD,BEDE.CDE的周长为10,DECECDBECECDBCCD10,平行四边形ABCD的周长为2(BCCD)20.【互动总结】(学生总结,老师点评)本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形、平行四边形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键环节3课堂小结,当堂达标(学生总结,老师点评)平行四边形的对角线互相平分

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服