1、第2课时加减消元法1体会加减消元法形成的思路2了解加减消元法解二元一次方程组的一般步骤3掌握用加减消元法解二元一次方程组重点了解加减消元法的一般步骤,会用加减消元法解二元一次方程组难点辨别使用哪种方法解二元一次方程组更方便一、情境导入师:怎样解下面的二元一次方程组呢? 学生在练习本上做,教师巡视、引导、解疑,注意发现学生在解答过程中出现的新的想法,可以让用不同方法解题的学生将他们的方法板演在黑板上,完后进行评析,并为加减消元法的出现作铺垫学生可能的解答方案1:解:把变形得x,把代入,得35y21,解得y3.把y3代入,得x2.所以方程组的解为 学生可能的解答方案2:解:由变形得5y2x11,把
2、5y当做整体将代入,得:3x(2x11)21,解得x2.把x2代入,得y3.所以方程组的解为 (此种解法体现了整体的思想)学生可能的解答方案3:(观察发现:两个方程中一个含有5y,而另一个是5y,两者互为相反数)解:两个方程相加,可以得到5x10,解得x2.把x2代入,解得y3,所以方程组的解为引导学生发现方程和中的5y和5y互为相反数,根据相反数的和为零(方案3)将方程和的左右两边相加,然后根据等式的基本性质消去了未知数y,得到了一个关于x的一元一次方程,从而实现了化“二元”为“一元”的目的这就是我们这节课要学习的二元一次方程组的解法中的第二种方法加减消元法二、探究新知师:下面我们就用刚才的
3、方法解下面的二元一次方程组1课件出示教材第111页例3.分析:方程、中未知数x的系数相等,可以利用两个方程相减消去未知数x.让学生独立解答完本题后,口算检验,让学生养成进行检验的习惯,同时教师需强调以下两点:(1)注意解此题的易错点是时是(2x3y)(2x5y)17,方程左边去括号时注意符号另外解题时,或都可以消去未知数x,不过在得到的方程中,y的系数是负数,所以在上面的解法中选择;(2)把y1代入或,最后结果是一样的,但我们通常的作法是将所求出的一个未知数的值代入系数较简单的方程中求出另一个未知数的值总结:在方程组的两个方程中,若某个未知数的系数是相反数,则可直接把这两个方程的两边分别相加,
4、消去这个未知数;若某个未知数的系数相等,可直接把这两个方程的两边分别相减,消去这个未知数得到一个一元一次方程,从而求出它的解,这种解二元一次方程组的方法叫做加减消元法2课件出示教材第111页例4.分析:其实在我们学习数学的过程中,二元一次方程组中未知数的系数不一定刚好是1或1,或同一个未知数的系数刚好相同或相反我们遇到的往往就是例题这样的方程组,我们要想比较简捷地把它解出来,就需要转化为同一个未知数系数相同或相反的情形,从而用加减消元法,达到消元的目的3课件出示教材第111页“议一议”学生分组讨论、总结并指名回答(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”(2)用加减消元法解二元
5、一次方程组的一般步骤是:变形找出两个方程中同一个未知数系数的绝对值的最小公倍数,然后分别在两个方程的两边乘以适当的数,使所找的未知数的系数相等或互为相反数;加减消元,得到一个一元一次方程解一元一次方程;把求出的未知数的解代入原方程组中的任一方程,求出另一个未知数的值,从而得方程组的解三、练习巩固1教材第112页“随堂练习”2补充练习:(1)二元一次方程组 的解是()A. B.C. D. (2)(2x3y5)20,求x,y的值(3)解方程组:3x2y12x5y3.四、小结1关于二元一次方程组的两种解法:代入消元法和加减消元法比较这两种解法我们发现其实质都是消元,即通过消去一个未知数,化“二元”为
6、“一元”2用加减消元法解方程组的条件:某一未知数的系数的绝对值相等3用加减消元法解二元一次方程组的步骤:变形,使某个未知数的系数的绝对值相等;加减消元;解一元一次方程;求另一个未知数的值,得方程组的解五、课外作业1教材第113114页习题5.3第14题2阅读教材第112页“读一读”本节课是让学生学习利用加减消元法解二元一次方程组,是提升学生求解二元一次方程组的基本技能课,在例题的设置上充分体现化归思想在学习二元一次方程组的解法中,关键是领会其本质思想消元,体会“化未知为已知”的化归思想因而在教学过程中教师通过对问题的创设,鼓励学生去观察方程的特点,在练习中提高学生的解题正确率和表达规范性,提升学生学好数学的信心,激发学习数学的兴趣.