收藏 分销(赏)

广东省佛山市顺德区大良顺峰初级中学七年级数学下册 5.3 简单的轴对称图形(第3课时)教学设计 (新版)北师大版.doc

上传人:s4****5z 文档编号:7410744 上传时间:2025-01-03 格式:DOC 页数:5 大小:308KB 下载积分:10 金币
下载 相关 举报
广东省佛山市顺德区大良顺峰初级中学七年级数学下册 5.3 简单的轴对称图形(第3课时)教学设计 (新版)北师大版.doc_第1页
第1页 / 共5页
广东省佛山市顺德区大良顺峰初级中学七年级数学下册 5.3 简单的轴对称图形(第3课时)教学设计 (新版)北师大版.doc_第2页
第2页 / 共5页


点击查看更多>>
资源描述
5.3 简单的轴对称图形(第3课时)教学设计 一、教学目标 本节是从折叠入手,使学生进一步认识角轴对称性,让学生通过动手操作、观察、自主探究角平分线的性质。内容包括角平分线的作法、角平分线的性质及初步应用。作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。 本节的具体教学目标为: 知识目标: 1.掌握作已知角的平分线的尺规作图方法。 2. 利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题. 能力目标: 1.在探究作已知角的平分线的方法和角平分线的性质的过程中,发展几何直觉。 2.提高综合运用三角形全等的有关知识解决问题的能力. 3.初步了解角的平分线的性质在生活、生产中的应用. 情感目标: 1. 使学生在自主探索角平分线的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验; 2.在探讨作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神。  二、教学过程分析 本节课设计了五个教学环节:第一环节:动手操作,导入课题;第二环节:动手操作、探求新知;第三环节:猜想再实践,发展几何直觉;第四环节:巩固基础,检测自我;第五环节:课堂小结,布置作业。 第一环节:动手操作,导入课题 活动内容: [情境问题一]不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?(对折)再打开纸片 ,看看折痕与这个角有何关系? 学生实验:通过折纸的方法作角的平分线。 教师与学生一起动手操作。展示学生作品。 活动目的:体验角平分线的简易作法,并为角平分线的性质定理的引出做铺垫,为下一步设置问题墙。 活动效果:通过折纸及作图过程,由学生自己去发现结论.教师要有足够的耐心,要为学生的思考留有时间和空间. 第二环节:动手操作,探求新知 1、[情境问题二] 对这种可以折叠的角可以用折叠方法的角平分线,对不能折叠的角怎样得到其角平分线? 有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是∠BAD的平分线,为什么? 教师课件展示实验过程,学生将实物图抽象出数学图形。 学生独立运用三角形全等的方法证明AE是∠BAD的平分线。 本次活动中,教师重点关注: (1)学生是否能从简易角平分仪中抽象出两个三角形; (2)学生能否运用三角形全等的条件证明两个三角形全等,从而说明线段AE是∠BAD的平分线。 活动目的:说明用其他实验的方法可以将一个角平分。培养学生的抽象思维能力和运用三角形全等的知识解决问题的能力,让学生体验成功。 活动效果:这个提问设置为角平分线的基本作图的出现做好铺垫,同时证明又验证了学生猜想的正确性,使学生获得成功的体验.将实际问题转化为数学问题,从而顺利解决. 2、问题: (1)从上面的探究中,可以得出作已知角的平分线的方法。已知什么?求作什么? (2)把简易平分角的仪器放在角的两边.且平分角的仪器两边相等,从几何角度怎么画? (3) 简易平分角的仪器BC=DC,从几何角度如何画 (4)OC与简易平分角的仪器中,AE是同一条射线吗? (5)你能说明OC是∠AOB的平分线吗? (6)归纳角平分线的作法 教师提问,学生与老师一起完成探究过程. 学生独立说明,学生相互讨论,交流,归纳后教师归纳展示作法。 活动目的:从实验中抽象出几何模型,明确几何作图的基本思路和方法.培养学生运用直尺和圆规作已知角的平分线的能力.让学生体验成功。 活动效果:这个提问设置为角平分线的基本作图的出现做好铺垫,同时证明又验证了学生猜想的正确性,使学生获得成功的体验.将实际问题转化为数学问题,从而顺利解决. 第三环节:猜想再实践,发展几何直觉。 [情境问题三] 将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论? 让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕. 问题 1:第一次的折痕和角有什么关系?为什么? 问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系? 学生动手剪纸,折叠,教师在多媒体上演示折叠过程.学生观察思考后,分组讨论、交流:第一次折痕是角的平分线,第二次的折痕是角平分线上的点到两边的距离,它们的长度相等.再利用几何画板软件验证结论,并用文字语言阐述得到的性质.(角的平分线上的点到角两边的距离相等) 教师归纳,引导学生结合图形写出已知、求证,分析后写出证明过程,并利用实物投影展示,强调定理的条件和作用. 活动目的:经历实践→猜想→证明→归纳的过程,符合学生的认知规律,尤其是对于结论的验证,信息技术在此体现其不可替代性,从而把学生的直观体验上升到理性思维. 活动效果:从实验探索中发现角的平分线的性质,培养学生的数学抽象概括能力及理性精神,让学生体验成功。 第四环节:巩固基础,检测自我。 辨一辨:如图,OC平分∠AOB,PD与PE相等吗? 判断:(1)∵ 如图,AD平分∠BAC(已知)∴BD = CD (2)∵ 如图, DC⊥AC,DB⊥AB (已知)∴BD = CD (3)∵ AD平分∠BAC, DC⊥AC,DB⊥AB (已知)∴BD = CD 练一练:1、如图,∵ OC是∠AOB的平分线, 又 ________________∴PD=PE ( ) 2、在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么? 3、如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则PE=__________cm. 4、已知△ABC中, ∠C=900,AD平分∠ CAB,且BC=8,BD=5,求点D到AB的距离是多少? 活动目的:通过学生对角的平分线的知识进行独立练习,自我评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。 活动效果:本次活动中,教师重点关注:(1)不同层次的学生对角的平分线的性质的理解程度; (2)对学生在练习中的问题进行针对性的分析、讲解。 第五环节: 课堂小结,布置作业。 小结:我们这节课学习了那些知识? 小节让学生畅所欲言,从不同角度谈论本节课的收获。 活动目的:通过小结归纳,完善学生对知识的梳理 活动效果:加深对本节知识的掌握。 三、教学反思 本课题设计思路按操作、猜想、验证的学习过程,遵循学生的认知规律,体现了数学学习的必然性.教学始终围绕着问题而展开,先从出示问题开始,鼓励学生思考、探索问题中所包含的数学知识,而后设计了第一个学生活动——折纸,让学生体验角的轴对称性,为角平分线性质做好铺垫。紧接着引出简易角平分仪推出了第二个学生活动——尺规作图,以达到复习全等和再次验证猜想的目的,猜想是否正确?还得进行证明,从而激发了学生学习数学的欲望和兴趣,使教学目标顺利达成.整堂课都以学生操作、探究、合作贯穿始终,在教学过程中给学生的思考留下足够的时间和空间,由学生自己去发现结论,学生在经历“将现实问题转化成数学问题”的过程中,对角平分线性质有了更深刻的认识,培养了学生动手、合作、概括能力,同时也提高了思维水平和应用数学知识解决实际问题的意识.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服