资源描述
1.2.3 相反数
课题: 1.2.3 相反数
课时
1课时
教学设计
课 标
要 求
借助数轴理解相反数的意义,掌握求有理数的相反数的方法
教
材
及
学
情
分
析
本节内容是人教版七年级上册第一章第二节第三小节的内容,主要讲述和相反数有关的知识。借助数轴,可以用数轴上的点直观地表示有理数,从而也为学生提供了理解相反数的直观工具,帮助学生学习相反数。
七年级的学生思维正处于从以具体形象思维成分为主,向以逻辑思维为主的转折期,授课时要注意具体性、形象性,同时还要有适当的抽象、概括要求。
课
时
教
学
目
标
1、 借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数。
2、 经历概念的生成、应用,体会相反数的意义,化简数的符号,学习观察、归纳、概括的策略与方法。
3、 通过合作学习,促进交流,激发兴趣
重点
理解相反数的意义
难点
对于-a不一定是负数的理解
提炼课题
结合数轴,数形结合理解相反数的意义
教法学法
指导
类比推理、归纳概括、讲练结合
教具
准备
多媒体课件
教学过程提要
环节
学生要解决的问
题或完成的任务
师生活动
设计意图
引
入
新
课
一:复习:
在数轴上画出+2,-2,+4, -4,0,并观察,找规律
之前我们学习过数轴的三要素,而且也知道了如何画数轴。那么现在请大家画数轴,在数轴上表示下列各数:+2,-2,+4, -4,0
回顾旧知,引入新知
教
学
过
程
二、 相反数:
(一)、关于原点对称:
(二) 、相反数:
1、 相反数的概念
2、 相反数的表示:
一、关于原点对称:
请同学们观察你画的数轴回答以下问题:
(1)4与-4分别在原点的 和 .它们到原点的距离为 .
(2)数轴上与原点距离是2 的点有 2个,这些点表示的数是 .
归纳:一般地,设a是一个正数,数轴上与原点的距离是a的点有____个,它们分别在原点的_____,表示______,我们说这两点关于原点对称,他们到原点的距离相等。
二、相反数:
观察+10.5和-10.5,发现他们符号不同但数字相同,引出相反数的定义。
1.相反数的定义
只有符号不同的两个数叫做互为相反数,零的相反数是零。
列举几个相反数的例子,如:6和-6,3.6 和-3.6,a和-a(符号不同,数字相同)
2.概念的理解:
(1)互为相反数的两个数分别在原点的两旁,且到原点的距离相等。
(2)一般地,数a的相反数是,不一定是负数。
(3)在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数
(4)相反数是指两个数之间的一种特殊的关系,成对出现。如:“-3是一个相反数”这句话是不对的。
规律:一般地,数a的相反数可以表示为-a
数形结合理解相反数的意义
结合数轴理解一个数的相反数求法
强调学生理解相反数时的注意点
教
学
过
程
3、规律:
3、 0的相反数是多少?(从数轴上考虑)
归纳:
一个正数的相反数是一个负数;
一个负数的相反数是一个正数;
0的相反数是0.
想一想:
a的相反数-a前有负号,那么-a一定是负数吗?
三、 例题讲解:化简下列各数
四、练习:
1、化简下列各数
2、 判断下列说法是否正确
通过练习巩固相反数的意义
小
结
1.相反数成对出现;
2.只有符号不同的两个数才互为相反数;
3.数轴上表示相反数的两个对应点,分别位于原点两侧,它们到原点距离相等.
板
书
设
计
相反数
一、 相反数:
只有符号不同的两个数叫做互为相反数,零的相反数是零。
二、 相反数的表示:
在一个数的前面添上“—”号。
三、 规律:
一个正数的相反数是一个负数;
一个负数的相反数是一个正数;
0的相反数是0.
作
业
设
计
习题1.2
必做题: (4)
选做题: (11)
教
学
反
思
展开阅读全文