1、有理数教学目标1理解有理数的意义。2会根据要求把给出的有理数分类。3了解“0”在有理数分类中的作用。4培养学生分类讨论的数学思想及对立统一的辩证唯物主义的观点。教学重点和难点重点:了解有理数包括哪些数。难点:要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。教学过程一、创设情境,揭示目标:直接导入课题学习目标:会根据要求把给出的有理数分类二、自学指导(课件出示)1、阅读课本1113页2、有理数的概念3、如何对有理数分类4、思考并回答下列问题:“0”是整数吗?是正数吗?是有理数吗?“2”是整数吗?是正数吗?是有理数吗?
2、自然数就是整数吗?是正数吗?是有理数吗?三、学生自学,教师巡视。学生看书,教师巡视,确保人人独立认真看书。四、引导更正,指导运用1数的扩充:数1,2,3,4,叫做正整数;1,2,3,4,叫做负整数;正整数、负整数和零统称为整数;数,8,+5.6,叫做正分数;,3.5,叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数。2思考并回答下列问题:“0”是整数吗?是正数吗?是有理数吗?“2”是整数吗?是正数吗?是有理数吗?自然数就是整数吗?是正数吗?是有理数吗?要求学生区分“正”与“整”;小数可化为分数。3有理数的分类不同的分类标准可以将有理数进行不同的分类:先将有理数按“整”和“分”的属性
3、分,再按每类数的“正”、“负”分,即得如下分类表:先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:注:“0”也是自然数。“0”的特殊性。4把一些数放在一起,就组成一个数的集合,简称数集(set of number)。所有正数组成的集合,叫做正数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集。5例题;例1:把下列各数填入表示它所在的数集的圈里:18,3.1416,0,2001,0.142857,95.正数集 负数集整数集 有理数集解:,3.1
4、416,2001, 95. 18, ,0.142857正数集 负数集18,3.1416,0,18,0,2001 2001,0.142857,95整数集 有理数集例2:把下列各数填入相应集合的括号内:29,5.5,2002,1,90%,3.14,0,2,0.01,2,1(1)整数集合:29,2002,1,0,2,1 (2)分数集合: 5.5,90%,3.14, 2,0.01,(3)正数集合:29,2002,90%,3.14,1,(4)负数集合:5.5,1,2,0.01,2,(5)正整数集合:29,2002,1,(6)负整数集合:1,2,(7)正分数集合:,90%,3.14,(8)负分数集合:5.
5、5,2,0.01,(9)正有理数集合:29,2002,90%,3.14,1,(10)负有理数集合:5.5,1,2,0.01,2,注:要正确判断一个数属于哪一类,首先要弄清分类的标准。要特别注意“0”不是正数,但是整数。在数学里,“正”和“整”不能通用,是有区别的,“正”是相对于“负”来说的,“整”是相对于分数而言的。五、课堂练习(1)下列说法正确的是( )零是整数;零是有理数;零是自然数;零是正数;零是负数;零是非负数。A: B: C: D:(2)下列说法正确的是( )A:在有理数中,零的意义表示没有 B:正有理数和负有理数组成全体有理数C:0.5既不是整数,也不是分数,因而它不是有理数D:零
6、是最小的非负整数,它既不是正数,又不是负数(3)100不是( )A:有理数 B:自然数 C:整数 D:负有理数(4)判断:(1)0是正数( ) (2)0是负数( )(3)0是自然数( ) (4)0是非负数 ( )(5)0是非正数( ) (6)0是整数 ( )(7)0是有理数( ) (8)在有理数中,0仅表示没有。( )(9)0除以任何数,其商为0 ( ) (10)正数和负数统称有理数。 ( )(11)3.5是负分数( ) (12)负整数和负分数统称负数 ( )(13)0.3既不是整数也不是分数,因此它不是有理数 ( )(14)正有理数和负有理数组成全体有理数。( )答案:1A;2D;3B;4;。六、课后小结本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?由学生小结有理数的定义和两种分类方法。七、课后作业课本:P14:1、2、3、4八、课后反思: