1、5.4 应用一元一次方程打折销售教学目标 1.理解成本、售价、利润、利润率之间的数量关系,并能复述。 2.能在具体打折问题中准确找出等量关系列方程求解,并根据所求方程的解来解释和分析打折销售中的具体现象。 3.通过调查,体验和分析,充分感受身边的数学,尝试用数学的眼光分析生活中的打折现象,理性消费。 4.会从问题情境中探索等量关系,经历和体验运用一元一次方程解决实际问题的过程,培养抽象、概括、分析问题、解决问题的能力。教学重难点 能在具体打折问题中准确找出等量关系列方程求解,并根据所求方程的解来解释和分析打折销售中的具体现象。教学过程设计: 一 情景引入 目的:二、活动探究根据调查了解到的有关
2、商品打折销售实际,解答学生自己编拟的题目.学生编题选:1.一件商品原价为120元,按八折(即原价的80%)出售,则现售价应为 元。2.某件商品进价是270元,八折销售可获利润50元,则原售价为 元。3.某商品的进价是1530元,若按商品标价的九折出售,利润率是15%。求该商品的标价。4.某老板先把一件商品按成本提高50%后标价,再打八折销售,售价为600元,这种商品的成本是多少?商家的利润为多少元?5.某商场售货员同时卖出两件衣服,每件都以135元售出,若按成本计算,其中一件盈利25%,另一件亏损25%,问这次售货员是赔了还是赚了?(这里选了四人小组中比较有代表性的五道题,学生们都准备得很充分
3、。)目的:设置了比教科书更开放的问题。实际生活中的数学问题往往可以有不同的方案,通过小组合作的形式,每个学生都有机会提出自己的解题方案,都有可能获得成功的体验。同时又分享别人的解题方案,共同讨论不同方案的优缺点,这对于发展学生的解题思路、增强学生的自信心、培养创造性思维十分有利。实际效果:学生经过研究后回答了对方编写的题目。答题的过程充分表现出他们对这类问题的胸有成竹,教学过程很顺利.三、讲授例题,规范过程例1一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠销售,结果仍获利15元,这种服装每件成本是多少元?教师可出示表格,让学生尝试用填写表格的形式理清数量之间的关系
4、。如果设每件服装的成本价为x元成本价标价售价售价-成本价利润xx(1+40%)(1+40%)x80%(1+40%)x80% - x15列出方程(1+40%)x80% - x = 15.解方程得x = 125 答:这种服装每件成本为125元. 例2某商场将某种商品按原价的八折出售,此时商品的利润率是10%。此商品的进价为1800元,那么商品的原价是多少?目的: 这两道题的分析是重点,在此过程中,首先让学生分小组读题,讨论,思考题目的已知和未知,考虑思路,在学生遇到困难时,教师给予适当的指导,并注意分析和综合两种分析方法的应用,先用分析法。由未知找已知,执果索因;再用综合法由已知找未知,由因导果。
5、这样有利于解决学生“不知如何思考”的问题,提高解题能力。实际效果:两道例题,第一道题师生共同分析,第二道题学生自己分析。部分学生在运用方程解答问题时,等量关系的寻找还是有困难,规范解题不够合理,仍需在作业过程中教师给予适当的指导。四、课堂小结这节课我们学习了有关打折销售的知识,其实类似的问题我们小学也遇到过,今天在分析实际问题时又用到了列表法,通过这节课的学习,谈谈你在知识方面的收获。提示学生通过对日历中的方程我变高了以及本节打折销售学习还有以往经验,让学生分组讨论,用一元一次方程解决实际问题的一般步骤是什么?目的:让学生进一步体会方程的作用,这里教师又提到学生的小学学习,目的是想提示学生,将今天的方程解法与小学学过的算术方法相对比。此活动的目的是使学生不再处于被动状态,而成为积极的发现者。学习活动效果:通过交流学生认识到列表分析问题的好处,发现打折销售中的一些规律,并感受到运用方程解决实际问题的优势。充分体现了数学课堂由单纯传播知识的殿堂转变为学生主动从事教学活动,构建自己有效的数学理念的场所。五、 布置作业习题第2、3、4题