1、与圆有关的位置课 标解 读与教 材分 析【课标要求】1、理解并掌握设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr;点P在圆上d=r;点P在圆内dr 点P在圆上d=r 点P在圆内dr点P在圆外;如果d=r点P在圆上;如果dr 点P在圆上d=r点P在圆内dr 这个结论的出现,对于我们今后解题、判定点P是否在圆外、圆上、圆内提供了依据。 下面,我们接下去研究确定圆的条件: ()经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆。 (1)作圆,使该圆经过已知点A,你能作出几个这样的圆?
2、(2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么? (3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),你是如何做的?你能作出几个这样的圆? (1)无数多个圆,如图1所示。 (2)连结A、B,作AB的垂直平分线,则垂直平分线上的点到A、B的距离都相等,都满足条件,作出无数个其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示 (3)作法:连接AB、BC; 分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;以O为圆心,以OA为半径作圆,O就是所要求作的圆,如图3所示在上面的作
3、图过程中,因为直线DE与FG只有一个交点O,并且点O到A、B、C三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过A、B、C三点可以作一个圆,并且只能作一个圆 即:不在同一直线上的三个点确定一个圆 也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆 外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心 下面我们来证明:经过同一条直线上的三个点不能作出一个圆 证明:如图,假设过同一直线L上的A、B、C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线L1,又在线段BC的垂直平分线L2,即点P为L1与L2点,而L1L,L2L,这与我们以前
4、所学的“过一点有且只有一条直线与已知直线垂直”矛盾。所以,过同一直线上的三点不能作圆。 上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立这种证明方法叫做反证法。 在某些情景下,反证法是很有效的证明方法。 例1、某地出土一明代残破圆形瓷盘,如图所示为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心。 分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心。 作法:(1)在残缺的圆盘上任取三点连结成两条线段; (2)作两线段的中垂线,相交于一点。 则O就为所求的圆心。 三、巩固练习 四、归纳总结(学生总结,老师点评) 本节课应掌握:点和圆的位置关系:设O的半径为r,点P到圆心的距离为d,则 2、不在同一直线上的三个点确定一个圆。 3、三角形外接圆和三角形外心的概念学生活动老师点评老师在黑板上演示:板书设计 点和圆的位置关系1、 2、不在同一直线上的三个点确定一个圆作业布置教 学反 思