6、 (1)作圆,使该圆经过已知点A,你能作出几个这样的圆?
(2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?
(3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),你是如何做的?你能作出几个这样的圆?
(1)无数多个圆,如图1所示。
(2)连结A、B,作AB的垂直平分线,则垂直平分线上的点到A、B的距离都相等,都满足条件,作出无数个.
其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示.
(3
7、作法:①连接AB、BC;
②分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;
③以O为圆心,以OA为半径作圆,⊙O就是所要求作的圆,如图3所示.
在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A、B、C三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过A、B、C三点可以作一个圆,并且只能作一个圆.
即:不在同一直线上的三个点确定一个圆.
也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.
外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.
下面我们来证明:经过同
8、一条直线上的三个点不能作出一个圆.
证明:如图,假设过同一直线L上的A、B、C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线L1,又在线段BC的垂直平分线L2,即点P为L1与L2点,而L1⊥L,L2⊥L,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾。
所以,过同一直线上的三点不能作圆。
上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设过同一直线上的三点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立.这种证明方法叫做反证法。
在某
9、些情景下,反证法是很有效的证明方法。
例1、某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心。
分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心。
作法:(1)在残缺的圆盘上任取三点连结成两条线段;
(2)作两线段的中垂线,相交于一点。
则O就为所求的圆心。
三、巩固练习
四、归纳总结(学生总结,老师点评)
本节课应掌握:
点和圆的位置关系:设⊙O的半径为r,点P到圆心的距离为d,则
2、不在同一直线上的三个点确定一个圆。
3、三角形外接圆和三角形外心的概念.
学生活动
老师点评
老师在黑板上演示:
板书设计
点和圆的位置关系
1、 2、不在同一直线上的三个点确定一个圆
作业布置
教 学反 思