1、1.4有理数的加减项目内容课题1.4有理数的加减(加法) (共 4 课时,第 1 课时)修改与创新教学目标1使学生了解有理数加法的意义。2使学生理解有理数加法的法则,能熟练地进行有理数加法运算。3培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。教学重、难点重点:有理数加法法则。难点:异号两数相加的法则。教学准备应用投影仪,投影片。教学过程一、复习引入:1在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。现在引入了负数,数的范围扩充到了有理数。那么,如何进行有理数的运算呢?2问题:一位同学沿着一条东西向的跑道,先走了20米
2、,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答。可是上述问题不能得到确定答案,因为问题中并未指出行走方向。二、讲授新课:1发现、总结:我们必须把问题说得明确些,并规定向东为正,向西为负。 (1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50,即这位同学位于原来位置的东方50米处。这一运算在数轴上表示如图:思考:还有哪些可能情形?你能把问题补充完整吗? (2)若两次都是向西走,则他现在位于原来位置的西方50米处,写成算式就是: (20)+(30)=50。(3)若第一次向东走20米,第
3、二次向西走30米,我们先在数轴上表示如图:写成算式是(+20)+(30)=10,即这位同学位于原来位置的西方10米处。(4)若第一次向西走20米,第二次向东走30米,写成算式是:(20)+(+30)=( )。即这位同学位于原来位置的( )方( )米处。后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不仿仍可看作运动的方向和路程):你能发现和与两个加数的符号和绝对值之间有什么关系吗?(+4)+(3)=( ); (+3)+(10)=( ); (5)+(+7)=( ); (6)+ 2 = ( )。再看两种特殊情形:(5)第一次向西走了30米,第二次
4、向东走了30米.写成算式是:(30)+(+30)=( )。(6)第一次向西走了30米,第二次没走.写成算式是:(30)+ 0 =( )。我们不难得出它们的结果。2概括:综合以上情形,我们得到有理数的加法法则:1. 同号两数相加,取相同的符号,并把绝对值相加;2. 绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;3. 互为相反数的两个数相加得0;4. 一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。3例题:例1:计算:(+2)+(11); (+20)+(+12); ; (3.4)+4.3。解:原式=(112)=9; 原式=+(20+12)=+32=32;=;原式= +(4.33.4)=0.9。4课堂练习: 三、课堂小结:这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则今后我们经常要用类似的思想方法研究其他问题应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。四、课后总结与作业略板书设计教学反思