1、1.4有理数的加减1. 有理数的加法【知识与技能】1.通过学生经历探索有理数加法法则的过程,理解有理数加法的意义.2.掌握有理数加法法则,并能正确运用法则进行有理数加法的运算.3.在探索有理数加法法则的过程中,向学生渗透分类讨论、归纳、转化等数学思想;在合作学习解决问题的过程中,体会合作交流的重要性.【过程与方法】从学生熟悉的生活实例得出“有理数加法”法则,并通过各种师生活动加深学生对有理数加法法则的理解;使学生在经历有理数加法法则的得出的过程中,体会数形结合的思想方法.【情感态度】通过有理数加法的学习,让学生在学习的过程中加强数感的培养,感受数的意义,学会与人交流,发展学生的思维,培养实事求
2、是的科学态度,渗透数形结合的思想和讨论法、归纳法的运用.【教学重点】重点是有理数加法法则的理解,会根据有理数的加法法则进行有理数加法运算.【教学难点】难点是有理数加法中异号两数的加法运算.一、情境导入,初步认识【情境1】实物投影,并呈现问题:一家超市内的对话.甲:老兄,听说你开店记账时有一个习惯,究竟是什么习惯,能否给我说说?乙:当然可以,那就是盈利记作盈利,亏本也记作盈利.甲:那如何区分盈利与亏本呢?乙:这太简单了,我把盈利记为正,亏本记为负.甲:原来是利用相反意义的量的表示方法呀,举个例子说说吧.乙:比如今天上午亏本元,我就在账本上记作:-;下午盈利元,我就记作:+3.甲:那你如何计算每天
3、的亏盈呢?乙:把每天盈亏数据相加不就得了.下面是我两天的记录,你知道它表示的意思吗?()()(-)(-)-【情境2】实物投影,并呈现问题:一只小熊在一条数轴上移动:(1)向东走5米,再向东走3米,两次一共向东走了多少米?(2)向西走5米,再向西走3米,两次一共向东走了多少米?(3)向东走5米,再向西走5米,两次一共向东走了多少米?(4)向东走5米,再向西走3米,两次一共向东走了多少米?(5)向东走3米,再向西走5米,两次一共向东走了多少米?(6)向西走5米,再向东走0米,两次一共向东走了多少米?思考“一共”的含义是什么?若设向东为正,向西为负,你能写出算式吗?【教学说明】学生独立思考后,小组讨
4、论,教师注意引导学生正确理解加法运算的实际意义,利用数轴得出运算结果.同时对有理数的加法进行分类,并用语言表达出来,从而得有理数的加法法则.情境1中()()表示上、下午都盈利,盈利8元;(-)(-)-表示上、下午都亏本,亏了8元.情境2中“一共”就是两个数相加.()()();()(-)(-)-;()()(-);()()(-);()()(-)-;()(-)()-5.【教学说明】通过现实情景再现,让学生体会数学知识与实际生活的联系.学生通过前面的情景引入,在老师的引导下,通过自己的观察,归纳出结论,进而体验到成功的喜悦,同时,也激发了学生学习的兴趣.二、思考探究,获取新知有理数的加法法则问题1 有
5、理数的加法法则的内容是什么?问题2 有理数的加法有几种情况?【教学说明】学生通过回顾旧知识,在经过观察、分析、类比后能得出结论.【归纳结论】有理数的加法法则:同号两数相加,取与加数相同的符号,并把绝对值相加.异号两数相加,绝对值相等时和为;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.一个数与零相加,仍得这个数.三、运用新知,深化理解1.一天早晨的气温是-7,中午的气温比早晨上升了11,中午的气温是( )A.11B.4C.18D.-112.如果a+b=0,那么a,b两个数一定是( )A.都等于0B.一正一负C.互为相反数D.不能确定3.若+=,则a、b的关系是(
6、).A.a、b异号B.ab的和是非负数C.a、b同号或其中至少有一个为0D.a、b的绝对值相等4.用“”或“”号填空:(1)如果a0,b0,那么a+b_0;(2)如果a0,b0,那么a+b_0;(3)如果a0,b0,那么a+b_0;(4)如果a0,b0,那么a+b_0.5.若a0,b0,ab0,则_.(用“”或“”连接)6.判断:两个有理数相加,和一定大于每一个加数吗?【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地巩固新知识.通过本环节的讲解与训练,让学生对有理数加法法则有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理问题.【答案
7、】1.B 2.C 3.C4.(1) (2) (3) (4) 5.6.两个有理数相加,和不一定大于每一个加数.四、师生互动,课堂小结1.有理数的加法法则的内容是什么?有理数加法的一般步骤是怎样的?2.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:从教材第19页“练习”中选取.2.完成同步练习册中本课时的练习.在本节的教学中,通过实际生活的需要引出有理数的加法运算,让学生体验生活与数学的密切联系.教学过程中,一是借助于数轴的直观演示,引导学生认真观察、积极思考,自己归纳法则;二是引导学生分析法则特点,总结规律,在此基础上加以记忆,从而使难点化解,并在化解难点的过程中培养学生的思维能力.提出问题后,让学生去思考、去分析,最终要让学生明白:对于两个有理数,相加的和不一定大于加数,这是有理数的加法与算术运算的一个很大的区别.为了解决从掌握知识到运用知识的转化,使知识教学和智能培养结合起来,设计的练习题遵循由浅入深、循序渐进的原则.