1、4.2 二元一次方程组【教学目标】1 了解二元一次方程组的概念。2 理解二元一次方程组的解的概念。3 会用列表尝试的方法求二元一次方程组的解。【教学重点 难点】重点:归纳二元一次方程组及其解的概念。难点:本节范例的问题情境比较复杂、并用列表的方法求出方程组的解。【教学过程】一 复习前课教学中的有关存在问题二 引入课前预习: 1 在方程2x+3y=5中,如果x=y,则x=_, y=_. 2 如果x=2a,y=3a.则2x+3y=_. 3 设第一个数是第二个数的2倍,第一个数与第二个数的2倍之和为20,求这个数?(设第一个数为x,第二个数为y,则有,所以) 三 利用投影:一个苹果和一个梨的质量合计
2、200克(如图41)这个苹果的质量加上一个10克砝码恰好与这个梨的质量相等(如图42)问苹果和梨的质量各为多少克? 教师评语:在这个问题中如果设苹果和梨的质量分别为x克和y克,同学们能列出几个方程,请同学们把它们写出来(x+y=200 y=x+10) 教师然后解释:方程x+y=200和方程y=x+10中,x ,y都分别表示同一个未知数,也就是说,X,y的值必须同时满足上述两个方程,因此可以把这两个方程合起来,写成 教师归纳:像这样由两个一次方程组成,并且含有两个未知数的方程组叫作二元一次方程组。 课堂练习P90练习1 (1)(2)(3)让学生填表格,然后教师将表中答案说明 2 分四个小组将个二
3、元一次方程组的结果填入相应的位置 教师归纳:同时满足二元一次方程组中各个方程的解叫作二元一次方程组的解。 例如就是这个二元一次方程组的解。例:小聪全家外出旅游,估计需要胶卷底片120张,商店里有两种型号的胶卷:A型每卷36张底片,B型每卷12张底片。小聪一共买了4卷胶卷,刚好有120张底片,如果两种胶卷分别买x卷和y卷,请根据问题中的条件列出关于x,y的方程组,并且列表尝试的方法求两种胶卷的数量。分析:(1)审题,该问题情境涉及哪些量?哪些是已知的,哪些是未知的?所求的是哪两个量?问题情境中两种胶卷及底片的总数有什么要求?(2)分析数量关系,该问题情境主要数量关系有:每卷胶卷底片的张数胶卷数底片总张数:A,B两种胶卷的总卷数4A,B两种胶卷的底片总张数120(3)建立数学模型,选择二元一次,则有 课堂练习P91 第1,第2题分组合作讨论完成。 探究活动 :略四 归纳小结,反思提高1 通过本课的探讨学习,你获得了哪些新知识,你认为有哪些方面的进步。(让学生进行总结,通过学生个人回顾、合作交流,总结本节课的所作所听所感,让知识系统化、合理化。)2 进一步让学生理解二元一次方程组(解)的概念。3 让学生体验对于含有两个未知数的实际问题可以用方程组来解。4 让学生列表尝试方法解二元一次方程组,注意审题、分析数量关系,让学生选择数学模型。五 布置作业