1、131 有理数的加法(一)本节课内容 有理数的加法本节课学习目标1 理解有理数的加法法则.2 能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.3 掌握异号两数的加法运算的规律.知识讲解正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为 4(2),蓝队的净胜球数为1(1)。这里用到正数和负数的加法。下面借助数轴来讨论有理数的加法。一、负数+负数如果规定向东为正,向西为负,那么一个人向西走2米,
2、再向西走3米,两次共向西走多少米?很明显,两次共向西走了6米.这个问题用算式表示就是:(2)(4)=6.这个问题用数轴表示就是如图1所示:二、负数正数如果向西走2米,再向东走4米, 那么两次运动后 这个人从起点向东走2米,写成算式就是 (2)+4=2。这个问题用数轴表示就是如图2所示:探究利用数轴,求以下情况时这个人两次运动的结果:(一)先向东走3米,再向西走5米,物体从起点向( )运动了( )米;(二)先向东走5米,再向西走5米,物体从起点向( )运动了( )米;(三)先向西走5米,再向东走5米,物体从起点向( )运动了( )米。这三种情况运动结果的算式如下: 3+(5)= 2; 5+(5)
3、= 0; (5)+5= 0。如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了5米。写成算式就是 5+0=5 或(5)+0= 5。你能从以上7个算式中发现有理数加法的运算法则吗?三、有理数加法法则1 同号的两数相加,取相同的符号,并把绝对值相加.2绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数的两个数相加得零.3一个数同0相加,仍得这个数。四、例题注意法则的应用,尤其是和的符号的确定!例1 计算 (3)(9); (2)(47)39.分析:解此题要利用有理数的加法法则.解:(1) (3)(9)= (3
4、+9)= 12:(2) (47)39=(4739)= 08.例2 足球循环赛中,红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算各队的净胜球数。解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数。三场比赛中,红队共进4球,失2球,净胜球数为 (+4)+(2)=+(42)=2;黄队共进2球,失4球,净胜球数为 (+2)+(4)= (42)= ( );蓝队共进( )球,失( )球,净胜球数为 ( )=( )。五、课堂练习1填空:(1)(3)+(5)= ; (2)3(5)= ;(3)5+(3)= ; (4)7(7)= ;(5)8(1)= ; (6)(8)1 =
5、 ;(7)(6)+0 = ; (8)0+(2) = ;2计算:(1)(13)+(18); (2)20(14);(3)1.7 + 2.8 ; (4)2.3 + (3.1);(5)()+(); (6)1+(1.5);(7)(3.04)+ 6 ; (8)+().3想一想,两个数的和一定大于每个加数吗?请你举例说明.4. 第23页练习 1、2。课堂练习答案1(1)8; (2)2; (3)2; (4)0; (5)7; (6)7;(7)6; (8)2.2(1)31; (2)7; (3)4.5; (4)0.7; (5)1 ;(6)0 ; (7)2.96; (8).3不一定,例如两个负数的和小于这两个加数.课
6、外作业:第31页1题.课外选做题1判断题:(1)两个负数的和一定是负数;(2)绝对值相等的两个数的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.2当a = 1.6,b = 2.4时,求a+b和a+(b)的值.3已知a= 8,b= 2. (1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.课外选做题答案1(1)对;(2)错;(3)错;(4)错.2a+b和a+(b)的值分别为0.8、4.3(1)当a、b同号时,a+b的值为10或10;有理数的加法(1)【目标预览】知识技能:1、通过实例,了解
7、有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;毛 2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。数学思考:1、正确地进行有理数的加法运算; 2、用数形结合的思想方法得出有理数加法法则。解决问题:能运用有理数加法解决实际问题。情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。【教学重点和难点】 重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;难点:异号两数如何相加的法则。【情景设计】我们来看一个大家熟悉的实际问题:足球比赛中进球个数与失球个数是相反意义的量若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+
8、3,失2个球记为负数:-2。它们的和为净胜球数:(+3)+(-2)学校足球队在一场比赛中的胜负情况如下:(1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(-2)(2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(-1)这里,就需要用到正数与负数的加法。下面,我们利用数轴一起来讨论有理数的加法规律。【探求新知】一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?利用数轴演示(如图1),把原点假设为运动起点。两次运动后物体从起点向右运动了8m。写成算式是:5+
9、3=8利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?(3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?(4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?(5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?(6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?(7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?总结:依次可得(2)(-5)+(-3)=-8 (3)5
10、+(-3)=2 (4)3+(-5)=-2 (5)5+(-5)=0 (6)(-5)+5=0 (7)5+0=5或(-5)+0=-5 观察上述7个算式,自己归纳出有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3一个数同0相加,仍得这个数。【范例精析】例1 计算下列算式的结果,并说明理由:(1)(+4)+(+7); (2)(-4)+(-7); (3)(+4)+(-7); (4)(+9)+(-4);(5)(+4)+(-4);(6)(+9)+(-2); (7)(-9)+(+2
11、); (8)(-9)+0;(9)0+(+2); (10)0+0学生逐题口答后,教师小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)=-(3+9) (和取负号,把绝对值相加)=-12例3 足球循环比赛中,红队胜黄队41,黄队胜蓝队10,蓝队胜红队10,计算各队的净胜球数。解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=2
12、;黄队共进2球,失4球,净胜球数为(+2)+(-4)= -2;蓝队共进1球,失1球,净胜球数为(+1)+(-1)=0;【一试身手】下面请同学们计算下列各题:(1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演,教师对学生板演进行讲评【总结陈词】1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则今后我们经常要用类似的思想方法研究其他问题。2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。【实战操练】1计算:(1)(-10)+(+6); (2)(+12)+(-4); (
13、3)(-5)+(-7);(4)(+6)+(+9); (5)67+(-73); (6)(-84)+(-59); (7)33+48; (8)(-56)+372计算:(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3; (4)3.29+1.78;(5)7+(-3.04); (6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+03计算:4*用“”或“”号填空:(1)如果a0,b0,那么a+b _0;(2)如果a0,b0,那么a+b _0;(3)如果a0,b0,|a|b|,那么a+b _0;(4)如果a0,b0,|a|b|,那么a+b _05*分别根据下列条件,利用|a|与|b|表示a与b的和:(1)a0,b0; (2) a0,b0;(3)a0,b0,|a|b|;(4)a0,b0,|a|b|.毛