1、6.3实践与探索(二)知识技能目标1.理解并掌握列方程解应用题的关键是分析题意,揭示问题中的相等关系;2.使学生掌握列一元一次方程解应用题的一般步骤是:(1)弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;(2)找出能够表示应用题全部含义的一个相等关系;(3)根据这个相等关系列出需要的代数式,从而列出方程;(4)解这个方程,求出未知数的值;(5)写出答案(包括单位名称)过程性目标使学生体验到生活中处处有数学,生活中时时用数学,要掌握数学公式和有关概念,如利息、利率、个人所得税、利息税、利润、成本价等,能在复杂的数量关系中找到相等关系,从而提高分析问题、解决问题的能力教学过程一、
2、创设情境前面的练习中讨论过的教育储蓄,是我国目前暂不收利息税的税种国家对其它储蓄所产生的利息,征收20%的个人所得税,即利息税小明爸爸前年存了年利率为2.4%的二年期定期储蓄今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.60元的计算器问小明爸爸前年存了多少元?扣除利息的20%,那么实际得到利息的多少?你能否列出较简单的方程?二、探究归纳这是求利率的问题,是有关本金、利率、利息之间关系的一类应用题,基本数量关系是:利 息本金利率;本息和本金利息;利息税利息20%三、实践应用例1某文具店出售每册120元和80元的两种纪念册,两种纪念册售后都有售价30%的利润,但每册120元的销售情况
3、不佳某人共有1080元钱,欲买一定数量的某一种纪念册,若买每册120元的钱不够,但该店予以优惠,如数付给他满足了他的要求,结果文具店获利和卖出同数量的每册80元的纪念册获得一样多,问此人共买纪念册多少册?分析 由于利润售价进价,而这些纪念册售价即为1080元,进价为原售价的(130%),即120(130%),利润与每册80元的获利一样多,即为8030%,由相等关系可列方程解 设共买纪念册x册,根据题意,得1080120(130%)x8030% x解得x10答:此人共买纪念册10册例2 某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500
4、元,乙种每台2100元,丙种每台2500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你帮助设计一下商场的进货方案解 分以下情况计算:设购进甲种电视机x台,乙种电视机(50x)台,则1500x2100(50x)=90000解得x25, 502525设购进甲种电视机x台,丙种电视机(50x)台,则1500x2500(50x)=90000解得x35, 503515设购进乙种电视机y台,丙种电视机(50y)台,则1500y2500(50y)=90000解得y87.5, 5087.5-37.5(不合题意,舍去)故商场进货方案为甲种25台,乙种25台;或购进甲种35台,丙种15台四、交流反思利率问题是有关本金、利率、利息之间关系的一类应用题,基本数量关系是:利 息本金利率;本息和本金利息;利息税利息20%五、检测反馈1肖青的妈妈前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元问这种债券的年利率是多少(精确到0.01%)?2某银行设立大学生助学贷款,分34年期,57年期两种贷款年利率分别为6.03%、6.21%,贷款利率的50%由国家财政贴补某大学生预计6年后能一次性偿还2万元,问他现在大约可以贷款多少(精确到0.1万元)?