资源描述
第二单元 课题 圆柱和圆锥 第 1 课时 总第 4 个教案
教学
内容
圆柱和圆锥的认识
教科书第9~10页例1和练一练,练习二第1~3题。
教学
目标
1.使学生在观察、操作、交流等活动中感知和发现圆柱、圆锥的特征,知道圆柱和圆锥的底面、侧面和高.
2.使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。
3.使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。
教学
重点
掌握圆柱、圆锥的特征。
教学
难点
知道平面图形和立体图形之间的关系,认识立体图。
课前
准备
1.圆柱和圆锥形的实物、模型;剪下第113、115页的图形。
2.多媒体展示台
教 学 过 程
思考与调整
(二次备课)
一、 自主先学
1.阅读例1,回答问题。
(1)圆柱是由几个面围成的?上、下两个面都是什么形状?大小相等吗?
(2)圆锥是由几个面围成的?其中哪个面是曲面?另一个面是什么形状?
(3)圆柱两个底面之间的( )叫做圆柱的高。从圆锥的(
)到底面( )的距离是圆锥的高。
2填出下面圆柱和圆锥各部分的名称。
二、交流共享
(一)学情预判
学生在自学时,只要认真阅读课本上的内容,都能正确地进行填空。但有一小部学生还不够深入理解内在联系。
(二)后教预设
1.研究圆锥体的特征。
(1)分组活动,每人拿一个圆柱,摸一摸、量一量、比一比,你发现了什么?
(2)互相交流,什么感觉.启发学生动手实验:
①用手平摸上下底,有什么特点.
②用笔画一画上下底面积有什么特点?你怎样证明这两个底面大小的关系?
③用双手摸侧面,你发现了什么?
讨论、交流、总结
①教师根据学生的回答,并板书:
②圆柱的高.出示高、底不同的两个圆柱。
A、直尺和三角板演示圆柱的高.使学生明确:圆柱两个底面之间的距离叫做高。
B、让学生找一找圆柱的高,然后教师出示圆柱的立体图形,
说明:两个底面之间的距离叫做圆柱的高。
教师先画出一条高,再让学生画高。
教师提问:刚才大家从不同位置画了高,说明高有多少条?
③巩固概念:
什么是圆柱的底面?什么是圆柱的侧面?什么是圆柱的高?
读书P18页,进行勾画。
2.研究圆锥体的特征。
(1)引导观察
①请学生从课前准备的物体中挑出圆锥体学具,请大家看一看,摸一摸。
与圆柱比一比,你看到了什么?摸到了什么?说给同桌听。
②让一生上来边指边说,回答后师板书:见后面的板书设计
③师指导透视图,示范画。
画透视图的时候应该先画一个椭圆,然后在椭圆的正上方画上顶点,最后把顶点与底面连起来。
(2)圆锥高的认识
①高在哪里?
②你能用自己的话说说什么是圆锥的高?
③圆柱的高有无数条,圆锥的高有几条?为什么? (教师在黑板上作高,板书:1条)
3.交流先学提纲
交流、讨论、总结。
三、反馈完善
1.完成练一练。
⑴让学生各自从教材提供的图片中找出圆柱形的和圆锥形的。
⑵交流说一说挑选的理由和不挑选的理由。
2.完成书上的练习五的第2题。
⑴引导学生从正面、上面、侧面观察圆柱和圆锥,看分别看到的是什么形状?
⑵在书中连线。
3.完成练习五的第3题。
⑴出示长方形、直角三角形和半圆形的小旗,引导学生猜想:
如果将旗杆快速旋转,想想一下:小旗旋转一周各能成什么形状?
⑵让学生旋转小旗,看猜想是否正确。
⑶如果让你自己设计一个小旗,你想将小旗设计成什么样子的?
想想一下,如果也这样旋转一周,会转成什么形状?自己做一做。
四、课堂总结
这节课你认识了什么?有什么收获?
找一个圆柱形和圆锥形的物体说说。
五、作业
《补充习题》P6~7
教后反思
第二单元 课题 圆柱和圆锥 第 2 课时 总第 5 个教案
教学
内容
圆柱的表面积
教科书第11~12页例2、例3和练一练,练习二第4、5题。
教学
目标
1.使学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。
2.使学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步形成和发展学生的空间观念。
3.使学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。
教学
重点
理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。
教学
难点
根据实际情况来计算圆柱的表面积。
课前
准备
圆柱形的物体,圆柱侧面的展开图
教 学 过 程
思考与调整
(二次备课)
一、 自主先学
1.阅读例2、例3,回答问题。
(1)商标纸展开后的形状是长方形,这个长方形的长和宽与圆柱有什么关系?怎样计算圆柱的侧面积?
(2)画圆柱的展开图时,要画出圆柱的哪几个面?试着在书上画一画。
(3)什么是圆柱的表面积?试着算算例3这个圆柱的表面积。
2.将一个圆柱侧面展开,得到一个长方形,量得这个长方形的长是31.4厘米,宽是5厘米,那么这个圆柱的高是( )厘米,底面半径是( )厘米。
二、交流共享
(一)学情预判
学生通过预习能知道求圆柱表面积的计算方法,但有一小部学生能模仿着练习,不能真正理解为什么这样计算。
(二)后教预设
1.交流先学提纲1
(1)在小组里说说你的想法。
(2)全班汇报,教师结合例题进行引导
①认识侧面积的意义和计算方法。
A、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。
你们是怎么算的?沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。
B、讨论:商标纸的面积就是圆柱中哪个面的面积?观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?
使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。
C、出示例2。
a.这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据较方便?
b.出示数据:底面直径11厘米 高:15厘米
c.学生算出商标纸的面积。
d.交流:你是怎么算的?先算什么?再算什么?
D、小结:算商标纸的面积,实际上就是算圆柱的侧面积。
追问:怎么算圆柱的侧面积?
长方形的面积= 长 × 宽
↓ ↓ ↓
圆柱的侧面积=底面周长× 高
E、发散提高:想一想,生活中还有哪些情况是求圆柱的侧面积?
F、独立完成“练一练”第1题
②认识表面积的意义和计算方法。
A、出示例3
a.问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?
b.让学生算一算后交流。师板书:
长:3.14× 2=6.28(厘米) 宽:2厘米
c.圆柱的两个底面的直径和半径分别是多少厘米?
板书:直径2厘米 半径1厘米
B、引导画出圆柱的展开图。
a.这个圆柱有几个面?分别是什么?
b.如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?
c.在书上方格纸上画出这个圆柱的展开图。
d.交流:你是怎么画的?
C、认识圆柱的表面积。
a.讨论:什么是圆柱的表面?怎么算圆柱的表面积?
板书:圆柱的表面积=底面圆的面积× 2 + 圆柱侧面积
b.算出这个圆柱的表面积。算后交流,提醒学生分步计算。
D、练习:完成“练一练”第2题。
a.各自练习,并指名板演。
b.对照板演,讨论:
这两题有什么不一样?知道底面圆的直径怎么求圆柱的底面积和圆柱的侧面积?知道圆的半径呢?想一想:如果知道的是圆的周长呢?
2.交流先学提纲2
指名汇报,共同评议。
三、反馈完善
1.完成练习六第4题。
注意指导学生思考问题要求的是圆柱的哪个面。
2.完成练习六第5题。
先让学生说说用铁皮做油桶时,需要做圆柱的哪几个面?
四、课堂总结
1.今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?
2.生活中的圆柱体表面都是一个侧面加两个底面吗?哪些不是?又该怎样计算它们的表面积呢?
五、作业
《补充习题》P8~9
教后反思
第二单元 课题 圆柱和圆锥 第 3 课时 总第 6 个教案
教学
内容
圆柱的表面积练习
教科书第13~14页练习二第6~12题。
教学
目标
1.使学生理解和掌握圆柱侧面积和表面积的计算方法,能根据实际生活情况解决有关圆柱表面积计算的实际问题。
2.在解决实际问题中,加深理解表面积计算方法,发展学生的空间观念。
3.让学生进一步密切数学与生活中联系,能够初步学以致用。
教学
重点
能根据实际生活情况解决有关圆柱表面积计算的实际问题。
教学
难点
灵活运用所学知识解决实际问题的能力。
课前
准备
多媒体展示台
教 学 过 程
思考与调整
(二次备课)
一、 自主先学
1.已知圆柱的底面周长C和高h,圆柱的侧面积S=( );
已知圆柱的底面直径d和高h,圆柱的侧面积S=( );
已知圆柱的底面半径r和高h,圆柱的侧面积S=( )。
2.圆柱的表面积=( )+( )。
二、交流共享
(一)学情预判
学生通过上一节课的学习,已经掌握了圆柱表面积的计算方法,所以能正确地解答先学提纲中的有关练习题。
(二)后教预设
交流先学提纲
1.在小组里说一说是怎样填空的。
2.全班汇报,说说填空时是怎样想的。
三、反馈完善
1. 完成练习二第6题
(1)学生独立完成填表。
(2)指名汇报,并比较圆柱的侧面积、底面积和表面积的计算方法。
2.完成练习二第7题
(1)学生通过读题理解题意,思考“需要白铁皮多少平方米”是求几个面的面积?(侧面积)
(2)指名板演,其他学生独立完成于课堂练习本上。
(3)集中分析评讲。
3.完成练习二第8题
学生独立完成这道题,集体订正。
4.完成练习二第9题
指名板演,其他学生独立完成于课堂练习本上。
5.完成练习二第10题
(1)学生读题理解题意。
(2)提问:这个“博士帽”是由哪几部分组成?分别求哪些面的面积?
(3)学生自主完成。
(4)集体评讲,注重后进生辅导。
6.完成练习二第11题
(1)学生读题。
(2)提问:要想求“这根花柱上一共有多少朵花必须先求什么?。
(3)学生独立完成
7.完成练习二第12题
(1)学生读题。
(2)引导思考。
(3)集体练习
8.完成练习二思考题(学有余力学生完成。)
(1)引导思考:截成3段截了几次?一共多了几个面?几个什么样的面?那么表面积增加了多少平方厘米呢?如果截成4段、5段会做吗?
(2)学生练习。
(3)想一想题中隐含着什么样的规律?可以怎样表示这一规律?
四、课堂总结
通过今天的练习,你对圆柱的侧面积和表面积有了哪些新的认识?
五、作业
《补充习题》P10~11
教后反思
第二单元 课题 圆柱和圆锥 第 4 课时 总第 7 个教案
教学
内容
圆柱的体积
教科书第15~16页的例4和第16页的“试一试”、“练一练”,完成练习三第1~2题。
教学
目标
1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学
重点
掌握和运用圆柱体积计算公式
教学
难点
圆柱体积公式的推导过程
课前
准备
多媒体展示台、圆柱等分模型
教 学 过 程
思考与调整
(二次备课)
一、 自主先学
1. 预习例4。长方体和正方体的体积相等吗?为什么?
2.自己说一说圆柱的体积指的是什么?把一个圆柱形的物体完全浸在水中,观察水面是否上升,感知圆柱的体积。猜一猜圆柱的体积是否等于上升的水的体积。
3.猜一下,要求圆柱的体积可以转化成我们已经学过的哪些图形的体积?如果把圆柱的底面平均分成若干等份,然后把圆柱切开,拼成一个近似的长方体,体积、底面积、高有变化吗?
4.圆柱的体积怎样计算?请用字母表示圆柱的体积计算公式(
)。
用字母表示圆柱、长方体和正方体的体积公式都可以写成( )。
二、交流共享
(一)学情预判
学生通过自学,能正确地说出等底等高的长方体和正方体的体积相等,但不能确定与长方体、正方体等底等高的圆柱的体积是否与长方体、正方体相等;学生能正确地写出圆柱的体积计算公式,但这个公式是怎么推导出来的在疑问,需要课上进行引导、交流。
(二)后教预设
1.在小组里交流先学提纲
2.全班汇报、交流,教师引导
(1)圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
演示一组动画(将圆柱底面等分成32份、64等份、128等份……)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。
(2)推出公式
①提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
②想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式:
圆柱的体积=底面积×高
③引导用字母公式表示圆柱的体积公式:V=sh
长方体的体积 = 底面积 × 高
↓ ↓ ↓
圆柱的体积 = 底面积 × 高
用字母表示计算公式V= sh
3.完成“试一试”
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
三、反馈完善
1.完成“练一练”第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2.完成“练一练”第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。
3.完成练习三第1题。
(1)学生独立完成。
(2)交流:要让学生说说圆柱体积的计算方法。
4.完成练习三第2题。
读题后强调说说为什么电饭煲要从里面量底面直径和高,然后列式解答。
四、课堂总结
这节课我们学习了什么?有哪些收获?还有什么疑问?
五、作业
《补充习题》P12
教后反思
第二单元 课题 圆柱和圆锥 第 5 课时 总第 8 个教案
教学
内容
圆柱的体积练习(1)
教科书第17~18页练习三第3~9题。
教学
目标
1.使学生熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积。
2.使学生体验解决问题策略的多样化,不断激发学生以数学的好奇心和求知欲。
3.培养学生分析问题,解决问题及实践应用能力。
教学
重点
熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积
教学
难点
根据实际情况灵活计算
课前
准备
多媒体展示台
教 学 过 程
思考与调整
(二次备课)
二、 自主先学
1.思考练习三第4题,求第一杯饮料体积的算式是( ),二杯饮料体积的算式是( ),第三杯饮料体积的算式是( )。不计算就判断:第( )杯的饮料最多。
2.一个圆柱形的茶杯,从里面测量得到底面积是8.4平方厘米,高为6厘米,那么这个杯子可以装多少毫升的水?
二、交流共享
(一)学情预判
学生已经掌握了圆柱体积的计算方法,能独立解答有关先学题。
(二)后教预设
交流先学提纲
1.在小组里说说自己的解题思路。
2.指名汇报,学生质疑。
问一问:如果不计算,你能估计第几杯饮料最多吗?
三、反馈完善
1.完成练习三第3题。
学生独立计算后指名说说计算过程和计算结果。
2.完成练习三第5题。
说说为什么要从里面量?如果从外面量算出的是什么?怎么知道这个保温茶桶能不能盛150千克的水呢?
3.完成练习三第6题。
(1)师出示50枚1元硬币用纸卷成圆柱的形状图,引导生观察图中的条件。
(2)思考:可以怎样计算1元硬币的体积?有什么不同的方法?
(3)交流:可以先算50枚1元硬币组成的圆柱的体积,再算1枚1元硬币的体积,也可以先算出枚1元硬币的厚度,再用底面积乘高。怎么算一枚硬币的体积?
4.完成练习三第7题。
先估计这两个圆柱的体积,指出哪一个大,再计算它们的体积,验证前面的估计。(如有困难,可以动手操作,实践一下。)
5.完成练习三第8题。
引导学生思考:根据底面周长先求出底面积,再求容积。
6.完成练习三第9题。
出示一个圆柱形茶杯,讨论:要知道它的容积,需要量出什么数据,怎么量?学生动手测量、计算。
四、课堂总结
本节课有什么收获?计算体积与容积方法一样吗?要注意什么?
五、作业
《补充习题》P13
教后反思
第二单元 课题 圆柱和圆锥 第 6 课时 总第 9 个教案
教学
内容
圆柱的体积练习(2)
教科书第18~19页练习三第10~16题。
教学
目标
1.使学生熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积。
2.提高学生应用公式解决实际问题的能力。
3.帮助学生在具体的情境中进一步感受所学知识的应用价值。
教学
重点
进一步培养学生的空间想像能力和综合应用数学知识解决实际问题的能力。
教学
难点
进一步培养学生的空间想像能力和综合应用数学知识解决实际问题的能力。
课前
准备
多媒体展示台、圆柱等分模型
教 学 过 程
思考与调整
(二次备课)
一、 自主先学
1.一个圆柱底面周长是62.8厘米,高是15厘米。它的侧面积是( )平方厘米,表面积是( )平方厘米,体积是( )立方厘米。
2.把两个形状、大小一样的圆柱拼成一个高18厘米的大圆柱后,表面积减少30平方厘米。原来每个圆柱的体积是( )立方厘米。
3.挖一个底面直径3米,深5米的圆柱形蓄水池。
(1)在池的四周和池底抹水泥,抹水泥的面积是多大?
(2)如果每立方米水重1吨,这个水池最多能蓄水多少吨?
二、交流共享
(一)学情预判
学生通过前两节课的学习,能计算圆柱的体积。第2题学生可能不知道如何拼,所以不能正确地列式解答,第3题部分学生不理解题意,所以也不能正确解答。
(二)后教预设
1.交流先学提纲1
指名汇报,要说清是怎样想的。
2.交流先学提纲2
(1)在小组里说说自己的解题思路。
(2)全班汇报,教师可借助圆柱模型让学生动手拼一拼。
3.交流先学提纲3
指名汇报,要说清每个问题要求的是什么。
三、反馈完善
1.完成练习三第10题。
根据表中的已知分别计算每个圆柱的未知量。学生独立完成。
2.完成练习三第11题。
学生读题,理解题意。注意分清3个小问题分别求什么问题。
3.完成练习三第12题。
引导思考:第1个问题求水池里最多能蓄水多少吨,要从体积入手;第2个问题要弄清楚求的是几个面的面积之和。
4.完成练习三第13题。
学生读题,分析题意。之后一人板演,全班齐练。评讲时注意后进生的辅导。
5.完成练习三第14题。
⑴出示题目,理解题目意思。
⑵讨论:塑料薄膜的面积相当于什么?
大棚内的空间相当于什么?
⑶分别怎么算?
引导理解:蔬菜大棚中求需要多少塑料薄膜和空间有多大,分别求圆柱表面积和体积的一半。
6.完成练习三第15题。
分析:玲玲把一块长方体橡皮泥捏成一个圆柱体虽然形状变了,但什么没变?(体积)
7.完成练习三第16题。
提问:要求水面高多少分米,要先求什么?(水杯的高)
四、拓展延伸,开阔思维
1.完成第19页思考题。
⑴把圆钢竖着拉出水面8厘米,水面下降4厘米,你能想到什么?
⑵全部浸入,水面上升9厘米,你又能想到什么?怎么算出这个圆钢的体积?
⑶这题还可以怎么想?
让学生明白:上升或下降的水的体积就是那一部分钢材的体积。
2.完成第19页动手做。
讲解测量方法——在容器里放适量的水,把土豆浸没在水中,测量并记录相关的数据,算出土豆的体积。并且提供一张表格,提示应该记录容器的底面积、放入土豆前的水面高度、放入土豆后的水面高度以及算出的土豆体积。然后是测量与计算,一边操作一边思考应注意什么。如,容器底面积不能直接量得,只能测量底面的半径、直径或周长。测量半径需要确定圆心,测量周长还要计算直径,一般测量直径,既容易量,也便于算。又如,测量底面直径、水面高度都要在容器里面进行,利用容器里面的数据,算出的才是水的体积、土豆的体积。
五、课堂总结
今天这节课你学到了哪些知识?有什么收获?还有哪些不清楚的问题?
六、作业
《补充习题》P14~15
教后反思
第二单元 课题 圆柱和圆锥 第 7 课时 总第 10 个教案
教学
内容
圆锥的体积
教科书第20~21页例5及相应的 “试一试”,“练一练”和练习四的第1~3题。
教学
目标
1.通过转化的思想,在实验的基础上使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积。
2.培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3.渗透事物间相互联系的辩证唯物主义观点的启蒙教育。
教学
重点
通过转化的思想理解和掌握圆锥体积的计算公式。
教学
难点
理解圆柱和圆锥等底等高时体积间的倍数关系。
课前
准备
圆锥体的图形,多媒体展示台
教 学 过 程
思考与调整
(二次备课)
一、自主先学
1.自学课本第20页例5。
(1)估计一下,这个圆锥的体积是圆柱的几分之几?
(2)准备一个圆柱和一个等底等高的圆锥,动手实验发现圆柱和与它等底等高的圆锥之间的关系,怎样计算圆锥的体积呢?
2.计算下面圆锥的体积。(单位:厘米)
(1)半径5厘米,高9厘米的圆锥。
(2)直径8厘米,高7.5厘米的圆锥。
二、交流共享
(一)学情预判
学生通过自学课本内容,能知道圆锥体积是圆柱体积的,也能计算有关圆锥的体积,但动手操作可能有些困难,所以上课时教师引导学生进行适当的操作。
(二)后教预设
1.交流先学提纲1
(1)在小组里进行交流。
(2)全班汇报,教师引导:
①课件出示例5。
a.通过演示使学生知道什么叫等底等
高。
b.让学生猜想:图中的圆锥和圆柱等
底等高,你能猜想一下它们体积之间有怎样的关系?
c.实验操作,发现规律。
(用学具演示)在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
d.是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。
②教师课件演示
③学生讨论实验情况,汇报实验结果。
② 启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积× =底面积×高×
用字母表示:V= Sh
小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以 ?
2.交流先学提纲2
指名说说计算方法和计算结果。
3.完成“试一试”
(1)出示题目
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)集体讲评。注意些什么问题。
三、反馈完善
1.完成“练一练”第1题
直接让学生口答。
2.完成“练一练”第2题
(1)学生独立解答。
(2)集体订正,强调要乘以 。
3.完成练习四第1题
(1)让学生说说这三小题的已知条件有什么不同,计算圆锥体积时要先算什么。
(2)学生独立解答。
(3)组织交流,强调要乘以 。
4.完成练习四第2题
借助直观图帮助学生弄清题意,并让学生直接根据圆柱形容器的高直接口算出结果。
5.完成练习四第3题
(1)学生独立解答。
(2)组织交流,要让学生具体说说解决问题时的思考过程。
四、课堂总结
通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
五、作业
《补充习题》P16~17
教后反思
第二单元 课题 圆柱和圆锥 第 8 课时 总第 11 个教案
教学
内容
圆锥的体积练习
教科书第22~23练习四的第4~12题。
教学
目标
1.通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。
2.通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。
3.进一步培养学生将所学知识运用和服务于生活的能力。
教学
重点
灵活运用圆柱圆锥的有关知识解决实际问题。
教学
难点
灵活运用圆柱圆锥的有关知识解决实际问题。
课前
准备
多媒体展示台
教 学 过 程
思考与调整
(二次备课)
一、自主先学
1.填第写课本第22页练习四第5题。
2.思考练习中第6题,底面直径是9,底面直径是3的两个底面之间是3倍的关系吗?为什么?
二、交流共享
(一)学情预判
学生通过前一节课的学习,基本掌握圆锥体积的计算方法,能解独立解答先学题。
(二)后教预设
交流先学提纲
指名汇报
1.第5题要让学生说说填空时的思考过程;
2.第6题要让学生说说是怎样进行推理或计算的。
引导分析:根据图示的各个立体图形的底面直径与高,寻找与圆锥体积相等的圆柱,可以从圆锥体积是等底等高圆柱体积的,推理出体积相等的圆柱与圆锥,如果底面积相等,圆锥的高是圆柱的3倍圆柱的高是圆锥的;如果高相等,圆锥的底面积是圆柱的3倍圆柱的底面积是圆锥的。还要注意到,大圆的直径是小圆的3倍小圆直径是大圆的,大圆的面积则是小圆的9倍小圆的面积是大圆的。
三、反馈完善
1.完成练习四第4题。
学生独立计算。
2.完成练习四第7题。
(1)提问:圆锥体积最大时与圆柱的关系是什么?(等底等高)
接着让学生独立练习。
(2)让学生自主地提出其他问题,进一步的掌握圆锥和圆柱的关系。
3.完成练习四第8题。
联系实际,解决问题。
4.完成练习四第9题。
让学生动手操作,理解三角形绕它的两条高旋转一周形成两个大小不同的圆锥。在此基础上让学生独立计算。
5.完成练习四第10题。
学生独立解答后指名汇报。
6.完成练习四第11题。
(1)学生独立解答。
(2)组织交流。
要让学生说说自己的解题过程。
7.完成练习四第12题。
出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第115页图制作的圆锥,求出它的体积来。
四、拓展练习(完成思考题)
1.学生独立思考完成。
2.组织交流
要让学生清楚:因为圆锥和圆柱的底面积相等,体积的比是1:6,所以圆锥和圆柱的高的比是1:2。如果圆锥的高是4.2厘米,圆柱的高是4.2×2=8.4(厘米),圆锥的高是4.2÷2=2.1(厘米)。
五、课堂总结
这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算方法,有时候还可以计算出圆锥形物休的重量。
六、作业
《补充习题》P18
教后反思
第二单元 课题 圆柱和圆锥 第 9 课时 总第 12 个教案
教学
内容
整理与练习(1)
教科书第24~25页“回顾与整理”、“练习与应用”第1~6题。
教学
目标
1.复习圆柱和圆锥的有关知识,掌握其特点,能借助图形说出公式推导过程,式形结合,构建体积计算公式系统,形成牢固的知识网络。
2.熟练地运用公式进行计算,让学生感受数学与生活的联系。
3.能综合运用所学知识,灵活地解决一些实际问题,培养学生运用知识解决实际问题的能力。
教学
重点
系统掌握体积公式的转化与推导过程,形成牢固的知识网络。
教学
难点
灵活地运用相关知识解决实际问题。
课前
准备
多媒体展示台
教 学 过 程
思考与调整
(二次备课)
一、自主先学
1.认真填写课本第24页练习与应用第1题。
2.一个棱长是4分米的正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是多少分米?
3.一个高10厘米的圆柱,把高减少2厘米后,表面积比原来减少18.84平方厘米,求新圆柱的体积。
二、知识再现
1.回顾与整理
(1)小组讨论第24页上面的三个问题。
(2)组织汇报
2.交流先学提纲1
(1)指名说说填空的结果
(2)想一想,说一说:圆柱的表面积怎样计算的?(板书:圆柱表面积=侧面积+两个底面积)圆柱的侧面积怎样计算?为什么用底面周长乘以高? 这两题计算时有什么不同的地方?圆柱的体积怎样计算的,圆柱的体积计算公式是怎样得到的?(强调把—个新知识转化成旧知识,得出新的结论)圆锥的体积怎样计算的?圆锥的体积计算公式又是怎样得到的?这两题计算过程完全一样吗?为什么不一样?
3.交流先学提纲2、3
指名说说解题思路和解题结果。
三、反馈完善
1.完成练习与应用第2题。
提问:压路机前轮是什么形状的?前轮滚动一周所形成的面的大小相当于前轮的哪一部分面积?接下来学生独立完成。
2.完成练习与应用第3题。
引导思考:水桶底部的铁箍大约长15.7分米就是圆柱的底面周长。求做这个水桶至少要用木板多少平方分米就是圆柱水桶的哪些面的面积之和。这个水桶能盛120升水吗?要拿什么和120升比较?
学生自主完成。
3.完成练习与应用第4题。
联系实际解决问题,要求得数保留整数。
4.完成练习与应用第5题。
(1)指名说说圆柱形橡皮泥的体积与捏成的圆锥体积之间有什么关系,两道题中捏成的圆锥的什么没有变化,怎样根据捏成的圆锥的底面积求它的高,或根据圆锥的高,求它的底面积。
(2)学生独立完成解答后组织交流。
5.完成练习与应用第6题。
(1)学生自主完成解答。
(2)组织交流不同的算法。
四、课堂总结
通过今天的练习,你对本单元的知识又有了哪些新的认识?还需要了解什么知识?
五、作业
《补充习题》P19
教后反思
第二单元 课题 圆柱和圆锥 第 10 课时 总第 13 个教案
教学
内容
整理与练习(2)
教科书第25~26页 “练习与应用”第7~11题、“探索与实践”第12~14题、“评价与反思”。
教学
目标
1.使学生进一步熟悉圆柱侧面积、表面积的计算方法以及圆柱和圆锥的体积公式,提高解决简单实际问题的能力。
2.使学生通过动手实践,探索并解决一些新的问题,获得对相关知识的一些新的知识。
3.培养学生运用知识解决实际问题的能力。
教学
重点
沟通已经学过的一些形体体积计算之间的联系。
教学
难点
综合运用知识和解决简单实际问题。
课前
准备
多媒体展示台
教 学 过 程
思考与调整
(二次备课)
一、自主先学
1 .探索课本第26页第14题。如果用一张长12.56厘米,宽6.28厘米的长方形纸卷成不同的圆柱,求出卷成的圆柱的体积。再想一檙 ,怎样卷成的圆柱的体积比较大?
2.晒谷场止有一个近似圆锥形的小麦堆,测得底面周长为12.56米,高1.2米,每立方米小麦约重7 30千克。这堆小麦大约有多少千克?(得数保留整千克)
3.认真阅读书本第26页“你知道吗”。
二、知识再现
1.学生完成“练习与应用”第7题的口算。
2.交流先学提纲2
(1)在小组里说说自己的解题思路。
(2)指名汇报,集体评议。
3.交流先学提纲3
说说通过阅读,你从而中知道了什么,想到了什么;说说对“周自相乘,以高乘之,十二而一”和“下周自乘,以高乘之,三十六而一”的理解。
三、反馈完善
1.完成“练习与应用”第8题。
引导学生把新知与旧知有机结合起来进行比较。
2.完成“练习与应用”第9题。
结合画图演示水流的速度就是圆柱的高,每分钟的高在每秒的基础上乘以60。
3.完成“练习与应用”第10题。
提问:用这堆沙子去填长方体的沙坑哪一个量是相等的?(体积)接着学生计算。
4.完成“练习与应用”第8题。
出示题目:
结合题目和图形理解长方体纸箱的长、宽、高与每个圆柱体饮料罐相
相关数据的关系。接下来学生自主完成。(教师要注意后进生的辅导)
5.完成“练习与应用”第12题。
可以先举例说明,再概括。
6.完成“练习与应用”第13题。
提问:要求圆柱体饮料罐的容积需要测量哪些数据?(要注意从它的里面测量)
通过计算再与商标纸上标出的容积比一比,你发现什么?加强学生把数学与生活有效结合起来。
7.完成“练习与应用”第14题。
(1)学生在小组里交流自己的操作过程和计算结果。
(2)指名说说自己的发现:用长方形纸卷成的圆柱中,把长方形的长作为圆柱的底面周长、长方形的宽作为圆柱的高,卷成的圆柱的体积比较大。
8.评价与反思:结合3个方面让学生自主评价。
四、课堂总结
通过这节课复习,你进一步明确了哪些知识?
五、作业
《补充习题》P20~21
教后反思
25
展开阅读全文