1、函数定义域的求法函数的定义域是函数三要素之一,是指函数式中自变量的取值范围。高考中考查函数的定义域的题目多以选择题或填空题的形式出现,有时也出现在大题中作为其中一问。以考查对数和根号两个知识点居多。求函数的定义域的基本方法有以下几种:1、 已知函数的解析式,若未加特殊说明,则定义域是使解析式有意义的自变量的取值范围。一般有以下几种情况:l 整式表达式是任意实数;l 分式中的分母不为零;l 偶次方根下的数(或式)大于或等于零;l 奇次方根下的数(或式)是任意实数;l 零指数幂的底数不等于零;l 指数式的底数大于零且不等于一;l 对数式的底数大于零且不等于一,真数大于零。当以上几个方面有两个或两个
2、以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。例1 函数的定义域为 3、 求函数y的定义域1、分析:对数式的真数大于零。解:依题意知: 即解之,得 函数的定义域为点评:对数式的真数为,本来需要考虑分母,但由于已包含的情况,因此不再列出。2、抽象函数的定义域的求法。已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。例2 (1)已知f(x)的定义域为-1,1,求f(2x-1)的定义域。(2)已知f(2x-1)的定义域为(-1,5,求函数f(x)的定义域。(3)已知f(2x-5)的定义域为(-1,5,求函数f(2-5x)的定义域。分析:f(2x
3、-1)要有意义,-12x-11,0x1,f(x)的定义域为0,1(2)由题知 -1x5,得-32x-19, 所以,原函数的定义域为X-32x-19.(3)由题意知 -1x5,所以-32x-19, 则-32-5x9,所以-x1 原函数定义域为x-x1评注:已知f(x)的定义域为D,求fg(x)的定义域,实质是解不等式g(x)D;而已知fg(x)定义域为D,求f(x)定义域,是根据xD,求g(x)的取值范围。此时,一定要注意题目中给的条件,不要被它造成的假象所迷惑,尤其分清说的是x还是别的。三、逆向型即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为,求参数的范围问题通常是转化为恒成立问题来解决。例3、已知函数的定义域为求实数的取值范围。分析:函数的定义域为,表明,使一切都成立,由项的系数是,所以应分或进行讨论。解:当时,函数的定义域为;当时,是二次不等式,其对一切实数都成立的充要条件是 综上可知。评注:不少学生容易忽略的情况,希望通过此例解决问题。练习:已知函数的定义域是,求实数的取值范围。巩固练习1、函数的定义域为 。2、函数y的定义域是。3、若函数的定义域为,则的定义域为 。4、若函数的定义域为,则的定义域为 。