1、离散型随机变量的均值和方差(2)教学目标(1)进一步理解均值与方差都是随机变量的数字特征,通过它们可以刻划总体水平;(2)会求均值与方差,并能解决有关应用题教学重点,难点:会求均值与方差,并能解决有关应用题教学过程一问题情境复习回顾:1离散型随机变量的均值、方差、标准差的概念和意义,以及计算公式2练习设随机变量,且,则 , ;二数学运用1例题:例1有同寝室的四位同学分别写一张贺年卡,先集中起来,然后每人去拿一张,记自己拿自己写的贺年卡的人数为(1)求随机变量的概率分布;(2)求的数学期望和方差例2有甲、乙两种品牌的手表,它们日走时误差分别为(单位:),其分布列如下:比较两种品牌手表的质量例3某
2、城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值()求的分布列及数学期望;()记“函数在区间上单调递增”为事件,求事件的概率.例4有一庄家为吸引顾客玩掷骰子游戏,以便自己轻松获利,以海报形式贴出游戏规则:顾客免费掷两枚骰子,把掷出的点数相加,如果得2或12,顾客中将30元;如果得3或11,顾客中将20元;如果得4或10,顾客中将10元;如果得5或9,顾客应付庄家10元;如果得6或8,顾客应付庄家20元;如果得7,顾客应付庄家30元试用数学知识解释其中的道理五回顾小结:1 已知随机变量的分布列,求它的期望、方差和标准差,可直接按定义(公式)求解;2 如能分析所给随机变量,是服从常见的分布(如两点分布、二项分布、超几何分布等),可直接用它们的期望、方差公式计算;3 对于应用题,必须对实际问题进行具体分析,先求出随机变量的概率分布,然后按定义计算出随机变量的期望、方差和标准差