收藏 分销(赏)

水力学-复习讲义.doc

上传人:仙人****88 文档编号:6606839 上传时间:2024-12-16 格式:DOC 页数:81 大小:1.95MB 下载积分:10 金币
下载 相关 举报
水力学-复习讲义.doc_第1页
第1页 / 共81页
水力学-复习讲义.doc_第2页
第2页 / 共81页


点击查看更多>>
资源描述
水力学网上辅导材料1: 一、水力学学习方法指导 水力学是中央广播电视大学水利水电工程专业(专科)必修的一门主要技术基础课,是研究以水为代表的液体的平衡和机械运动规律,以及这些规律在工程中的应用的课程。 通过本课程的学习,要求学员掌握水流运动的基本概念、基本理论和分析方法,能正确区分不同水流的运动状态和特点;掌握水流运动的基本规律,并能运用水流运动基本理论分析小型水利工程中一般的水力现象;学会常见水利工程中的水力计算,能进行水力荷载的确定、过水能力和过流建筑物尺寸的设计计算,以及水流衔接和消能的水力设计,了解水流运动要素的量测方法,为今后学习专业课程、从事专业技术工作打下良好的基础。 学员们学习使用的是由李国庆、刘之平主编的为开放试点教育编写的水力学教材。教材每一章包括基本要求、学习重点、本章内容、小结和练习题。学员在学习每一章内容前,可以预先阅览基本要求和学习重点,以便明确学习的主要内容。在学习完每一章的内容后,要对本章进行小结,并用后面的思考题检查对理论知识的掌握程度,通过习题练习,掌握水力计算的基本方法,这些水力计算方法是实际工程中经常会遇到的。 如果在学习中有疑难问题,可以通过信件、电话或网上联系,由教师进行答疑。对于在工作中遇到的实际水力学问题,也欢迎来信来电联系。 认真完成习题是学习过程中加深理解基本概念、基本原理,掌握基本分析方法和计算方法,培养提高分析、解决问题能力的重要环节。应认真、独立完成思考题和规定的作业。 解题时要审明题意,明确已知条件和要求的水力参数,绘出简图,理顺解题思路,确定应用的公式、图表,做到分析有依据,计算准确,步骤清楚,书写整洁,答案完整。每个习题解题过程应包括:已知条件、所求的问题、简图和求解过程。求解过程应包括引用的公式及其编号、必要的坐标、计算过程及答案,还要注意物理量的单位。计算的程序为:计算公式 未知量表达式 代入数据 重要计算过程 答案。 还需要强调的是,在练习题中通常把基本条件和参数都告诉了你,根据这些已知条件你可以直接进行分析和计算。但是在实际工作中这些基本条件和参数需要靠自己去收集整理和选择。因此,当你在工作中遇到有关水力学问题时,首先要收集基本资料和计算条件,并能准确选定各种参数和系数,并在实际工作中不断积累经验。错误的选择会得到不合理的结果。 水力学是实践性很强的学科,实验是学习水力学课程的重要环节。通过实验可以观察水流现象,验证和巩固所学的理论知识,培养严肃认真、实事求是的治学态度。有条件的教学辅导站可以安排一定的教学实验,以演示实验为主。学员们可以通过观察周围河渠内的水流现象,结合课本的内容,加深对所学知识的理解。 二、第1章 绪 论 【教 学 基 本 要 求】 1、明确水力学课程的性质和任务。 2、了解液体的基本特征,理解连续介质和理想液体的概念和在水力学研究中的作用。 3、理解液体5个主要物理性质的特征和度量方法,重点掌握液体的重力特性、惯性、粘滞性,包括牛顿内摩擦定律及其适用条件。了解什么情况下需要考虑液体的可压缩性和表面张力特性。 4、了解质量力、表面力的定义,理解单位面积表面力(压强、切应力)和单位质量力的物理意义。 5、了解量纲的概念,能正确确定各种物理量的量纲。 【学 习 重 点】 1、连续介质和理想液体的概念。 2、液体的基本特征和主要物理性质,特别是液体的粘滞性和牛顿内摩擦定律及其应用条件。 3、作用在液体上的两种力。 【内 容 提 要 和 学 习 指 导】 1.1水力学课程的性质和任务 水力学是水利水电工程专业重要的技术基础课,它的任务是研究以水为代表的液体的平衡和机械运动的规律,并依据这些规律来解决工程中的实际问题,为今后学习专业课程和从事专业技术工作打下良好的基础。 1.2 连续介质的概念 连续介质是水力学研究中常用的基本概念。我们在学习普通物理时都知道,世界上一切物质都是由分子构成的。从微观上而言,组成物体的分子都是离散的,其运动状态是随机的呈不均匀状态。这给运用高等数学微积分方法来分析讨论液体的运动带来了很大的困难,因为微积分运算的必要条件是连续性。从宏观上而言,我们所研究的是由液体质点组成的液体的宏观运动。液体质点是由大量分子组成的在微观上充分大而宏观上是非常小的几何点的液体微团,它呈现的运动是由组成质点的大量分子运动的平均,因而宏观运动是均匀而连续的。这样我们就可以提出下列假设:即液体所占据的空间是由液体质点连续地无空隙地充满的,组成液体的质点运动的物理量是连续变化的连续函数。这就是连续介质的概念。这样水力学研究的液体运动就是连续介质的连续运动,可以运用微积分来分析液体运动和建立运动方程,给水力学研究带来极大的方便。 1.3液体的基本特征 自然界的物质有三种基本形式,即气体、液体和固体。液体是介于固体和气体之间的物质形态,因此液体既具有固体和气体的某些特征,也存在与两者不同的特征。液体的基本特征可以总结如下:液体是一种具有流动性(易变形的)、不易被压缩的、均匀各向同性的连续介质。 1.4液体的主要物理性质 在水力学中,与机械运动有关的液体主要物理性质如下: (1)液体的惯性、质量和密度: 惯性是物体具有的反抗改变它原有运动状态的物理特性。质量是物体惯性大小的度量,常以符号M表示。当物体受其到它物体的作用而改变运动状态时,它反抗改变原来的运动状态而作用在其它物体上的反作用力称为惯性力,惯性力的表达式为: (1—1) 密度是单体体积液体具有的质量,液体的密度常用符号ρ表示。请注意在国际单位制和工程单位制中质量和密度的单位是不同的,我国规定推荐使用国际单位制,但在工程中还有些地方使用工程单位制,因此物理量两种单位制的表达都应掌握。 (2)液体的重量与容量: 地球对物体的万有引力称为重力,或称为物体具有的重量,常用符号G表示。单位体积液体所具有的重量称为容重,也称为重度,容重用符号γ表示,γ=ρg。 液体的密度和容重随温度和压强的改变而变化,但这种变化很小,通常可以视作常数。水的密度为ρ=1000kg/m3,水的容重为γ=9800N/m3。 (3)液体的粘滞性和粘滞系数: 液体的粘滞性是本章的重点,它是液体在流动中产生能量损失的主要原因,也是今后讨论液体运动基本方程的关键一项内容。 当液体流动时,液体质点之间存在着相对运动,这时质点之间会产生内摩擦力反抗它们之间的相对运动,液体的这种性质称为粘滞性,这种质点之间的内摩擦力也称为粘滞力。相邻液层之间内摩擦力的大小F由牛顿内摩擦力定律给出,即 (1—2) 单位面积上的内摩擦力(切应力) (1—3) 牛顿内摩擦定律的内容叙述如下:当液体内部的液层之间存在相对运动时,相邻液层间的内摩擦力F的大小与流速梯度 和接触面面积A成正比,与液体的性质(即粘滞性)有关,而与接触面上的压力无关。 式中μ是表征液体粘滞性大小的动力粘滞系数,单位是(N·s/m2)。另一形式的粘滞系数用v表示,即:             (1—4) 称v为运动粘滞系数,它的单位是(m2/ s或cm2/ s)。 粘滞系数受温度影响较大,200C时水的μ= 1.002×10-3N.s/m2,v =1.003×10-6 m2/ s 。 牛顿内摩擦定律的另一种表达式,表示切应力τ与剪切变形速度 的关系,即 (1—5) 需要强调的是:牛顿内摩擦定律只适用于牛顿流体和层流运动,牛顿流体是指在温度不变的情况下切应力τ与流速梯度 成正比,这时粘滞系数μ为常数。 对于静止液体,液体质点之间没有相对运动,因而也就不存在粘滞性。 (4)液体的压缩性: 液体受到的外界压力变化而引起液体体积改变的特性称为液体的压缩性。液体压缩性的大小,可用体积压缩系数β或体积弹性系数K表示,即                  (1—6) 液体的压缩性很小,除了在水击等压强发生急剧变化的水力过程中要考虑液体的可压缩性,一般情况下都忽略水的可压缩性,也就是把水当作不可压缩液体来处理。 (5)液体的表面张力特性: 表面张力是仅在液体自由表面上存在的局部水力现象,它使液体表面有尽量缩小的趋势。对体积小的液体,表面缩小趋于球体状,如荷叶上的水珠等。表面张力的大小用表面张力系数σ度量,它表示液体自由面上单位长度所受到拉力的大小,单位为(N/m)。一般情况下,表面张力对液体运动的影响可以忽略不计。但在特殊情况下,如细玻璃管内的毛细现象使水柱升高或汞柱降低,对液位和压强量测造成误差,有自由表面和较大曲率的小流量运动和微小水滴的形成球状,这些情况下表面张力的影响必须考虑。 (6)汽化压强: 汽化压强是指液体汽化和凝结达到平衡时液面的压强。汽化压强随液体的种类和温度的不同而改变。水利工程中的空化现象与液体的汽化压强有关,需要注意。 综上所述,液体的各种物理特性,它们各自不同程度地影响着液体的运动,其中惯性、重力和粘滞性对液体运动有重要的影响,而液体的可压缩性、表面张力和汽化压强只有在一些特殊问题中才需要考虑,请注意区分。 特别需要强调的是:粘滞性对液体的影响十分重要而且极其复杂,它使得研究和分析液体的运动规律变得非常困难。为了简化问题,便于从理论上研究和分析液体的运动,在水力学引入了“理想液体”的概念。 1.5理想液体 “理想液体”是为了简化对液体运动的研究而引进的一种假设,即认为这是一种完全没有粘滞性的液体。这样,先按理想液体分析研究液体的运动,从理论上求得其运动规律,借以揭示实际液体运动的规律和趋势。再根据实际液体的具体情况考虑粘滞性的影响,对理想液体的运动规律进行修正,就可以得到实际液体的运动规律。需要注意的是,理想液体是一种实际上并不存在的假想的液体,引进理想液体仅是水力学研究的一种简化方法。 1.6量纲和单位 量纲用来表示物理量的性质和种类,单位是度量物理量的基准量,两者有着十分密切的关系。量纲是单位的抽象和概括,单位是量纲的具体表示。 量纲分为基本量纲和导出量纲,单位也分为基本单位和导出单位。基本量都是独立的,不能相互组合导出其它基本量,而导出量都可以用基本量的组合来表示。如:水力学中,质量[M]、长度[L]、时间[T]构成一组基本量纲,这三个物理量的基本单位千克(kg)、米(m)、秒(s)组成的单位制称为国际单位制。 某一个物理量N的量纲可以表示成基本量纲的单项指数乘积形式,即 [N]=[L x·M y·T z] (1—7) 式中:[L]、[M]、[T]是基本量纲,x、y 、z是各基本量纲的指数,这些指数可以是正数、负数或者零。 对于每一个物理量,我们既要搞清楚它的量纲并能表示成(1—7)式的形式,也要能确定其在不同单位制下的单位。 1.7作用在液体上的两种力 液体无论处于平衡或运动状态,都受到各种力的作用。作用在液体上的力包括重力、惯性力、粘滞力、压力、表面张力等,按力的作用方式可以分为质量力(重力、惯性力)和表面力(粘滞力、压力、表面张力)两类,这种分类是为了便于进行液体运动受力分析,进而可以导出液体平衡或运动状态下的基本关系式。 请理解单位质量力( ) 和单位面积表面力(压强p和切应力τ)的含义及相应的单位与量纲。 1.8水力学的研究法 水力学是一门实践性很强的学科,它的理论都是生产实践和实验研究的总结,并在解决实际工程问题过程中经受检验、得到修正和进一步完善。因此我们在学习本课程的过程中,既要重视对本课程理论体系的理解,搞清基本方程和公式的来历、应用条件、使用范围,更要能正确运用所学的理论知识解实际工程问题,掌握理论分析、实验研究和数学模拟紧密结合的水力学研究方法。 【思考题】 1-1液体的基本特征是什么?它与气体、固体有什么区别? 1-2为什么要引进连续介质的假设?为什么可以把液体当作连续介质? 1-3液体的主要物理特性是什么?研究液体运动一般主要考虑哪些物理性质?什么情 况下要考虑液体的可压缩性和表面张力特性? 1-4液体内摩擦力的大小与哪些因素有关?叙述牛顿内摩擦定律的内容、表达式和使用条件。 1-5理想液体与实际液体有什么区别?为什么要引入理想液体的概念? 1-6作用在液体上的力有哪几种?如何定义? 1-7单位质量力怎样定义的?它的量纲和单位是什么? 三、第2章 水静力学 【教学基本要求】 1、正确理解静水压强的两个重要的特性和等压面的性质。 2、掌握静水压强基本公式和物理意义,会用基本公式进行静水压强计算。 3、掌握静水压强的单位和三种表示方法:绝对压强、相对压强和真空度;理解位置水头、压强水头和测管水头的物理意义和几何意义。 4、掌握静水压强的测量方法和计算。 5、会画静水压强分布图,并熟练应用图解法和解析法计算作用在平面上的静水总压力。 6、会正确绘制压力体剖面图,掌握曲面上静水总压力的计算。 【学 习 重 点】 1、静水压强的两个特性及有关基本概念。 2、重力作用下静水压强基本公式和物理意义。 3、静水压强的表示和计算。 4、静水压强分布图和平面上的静水总压力的计算。 5、压力体的构成和绘制以及曲面上静水总压力的计算。 【内容提要和学习指导】 本章研究处于静止和相对平衡状态下液体的力学规律。 2.1 静水压强及其特性 静止液体作用在每单位受压面积上的压力称为静水压强,单位为(N/ m2),也称为帕斯卡(Pa)。某点的静水压强p可表示为: (2—1) 静水压强有两个重要特性:(1)静水压强的方向垂直并且指向受压面;(2)静止液体内任一点沿各方向上静水压强的大小都相等,或者说每一点的静水压强仅是该点坐标的函数,与受压面的方向无关,可表示为p = p (x,y,z)。这两个特性是计算任意点静水压强、绘制静水压强分布图和计算平面与曲面上静水总压力的理论基础。 2.2 等压面 液体中由压强相等的各点所构成的面(可以是平面或曲面)称为等压面,静止液体的自由表面就是等压面。 对静止液体进行受力分析,导出液体平衡微分方程和压强全微方程,根据等压面定义,可得到等压面方程式: Xdx+Ydy+Zdz = 0 (2—2) 式中:X、Y、Z是作用在液体上的单位质量力在x、y、z坐标轴上的分量,并且 (2—3) 其中:U是力势函数。 等压面有两个特性:(1)等压面就是等势面;(2)等压面与质量力正交。 2.3重力作用下的静水压强基本公式 重力作用下的静水压强基本公式(水静力学基本公式)为 p = p0+γh (2—4) 式中:p0—液体自由表面上的压强,h—测压点在自由面以下的淹没深度,γ—液体的容重。 该式表明:静止液体内任一点的静水压强由两部分组成,一部分是液体表面压强p0 ,它将等值地传递到液体内每一点;另一部分是高度为h的液柱产生的压强γh 。该式还表明,静水压强p沿水深呈线性分布。对于连通器,水深相同的点组成的面是等压面;当自由表面是水平面时,等压面也是水平面。 2.4绝对压强、相对压强和真空度 以设想完全没有大气存在的绝对真空为零计量的压强称为绝对压强p';以当地大气压作为零点计量的压强是相对压强p ,若当地大气压强用绝对压强表示为pa ,则相对压强与绝对压强的关系为: p= p'- pa (2—5) 当液面与大气相连通时,根据相对压强的定义,液面压强可表示为p0 = 0 ,根据式 (2—4),静止液体中某点的相对压强为: p=γh (2—6) 这是用相对压强表示的静水压强基本公式,该式也可表示为: (2—7) 即用液柱的高度表示某点的压强,这是压强表示的另一种方法,也是用测压管量测某点压强的依据。 当液体中某点的绝对压强小于当地大气压强,该点的相对压强为负值,则称该点存在真空。负压的绝对值称为真空压强hυ,即 (2—8) 请注意:绝对压强永远是正值,相对压强可正也可负,真空压强(真空度)不能为负值。最小的真空压强为零,这时相对压强也为0,而绝对压强p'= 1工程大气压= 98kN /m2,用液柱高度表示绝对压强 m水柱。 压强的计量单位表示有三种:(1)用应力单位表示:N /m2(Pa)或kN /m2(kPa);(2)用大气压的倍数表示:即pa =98kN /m2,用pa的倍数表示;(3)用液柱高度:米水柱高度(mH2O)或毫米水银柱高度(mmHg)。它们之间的关系为: 1pa = 98kN /m2, mH2O, mmHg 2.5水头和单位势能 重力作用下静水压强基本公式可表示为: p = p0+γ(z0 - z) 或 z + = c (2—9) 式中:z0和z分别是液面和液体内某点相对于某个基准面的位置高程,常数c= z0 + 。该式表示:重力作用下静止液体内任一点的( )都相等。z和 都是长度量,而且都具有能量的含义,z是单位重量液体所具有的位能, 是单位重量液体具有的压能。水力学中习惯用“水头”来称呼这些具有能量意义的长度量,即z称为位置水头(即单位重量液体具有的位置势能), 称为压强水头(单位重量液体具有的压强势能),而( )称为测压管水头(表示单位重量液体具有的总势能)。 因此,水静力学基本方程也可表述为:静止液体中各点的测压管水头是常数。该方程反映了静止液体中的能量分布规律。 2.6压强的测量和计算 测量液体的压强,可以用压力表(机械式压强量测仪表)、压力传感器(电测方法)等量测仪器,也可以用水静力学原理设计的测压管、比压计、U型水银测压计等量测仪器和方法。 静水压强的量测和计算的理论依据是水静力学基本公式和连通器中等压面关系,具体应用见【解题指导】 2.7静水压强分布图 静水压强分布图可以形象地反映受压面平上的压强分布情况,并能据此计算矩形平面上的静水总压力。用比例线段表示压强的大小,根据静水压强特性,用垂直受压面的箭头表示静水压强的方向,根据静水压静沿水深是线性分布的规律,绘出平面上两点的压强并把其端线相连,即可确定平面上静水压强分布,这样绘制的图形就是静水压强分布图。静水压强分布图参见教材上图2—15。 需要指出的是:当受压面两侧均有液体作用或者一侧与大气相接触,这时可以用受压面两侧静水压强分布图进行合成,得到相对压强分布图。在相对压强分布图中,当表示压强方向的箭头背向受压面时,说明它代表受压面两侧合压强的方向;当外侧是大气压强时,这时说明受压面上的相对压强是负压或存在真空。 2.8作用在平面上静水总压力 (1)对于矩形平面,应用静水压强分布图可以求出作用在平面上静水总压力的大小为 P=Ωb (2—10) 式中: 是静水压强分布图的面积,b和L分别是矩形平面的水平宽度和长度,h1和h2分别是矩形平面上边和底边处的水深。 静水总压力是平行力系的合成,根据静水压强的特性,静水总压力的方向垂直指向该平面。静水总压力的作用点D(又称压力中心)位于纵向对称轴上,D到底边的距离e为 (2—11) 这样作用在平面上静水总压力的三个要素——大小、方向、作用点都可以确定了。在应用式(2—11)进行计算时需要注意h1和h2的含义。 (2)用解析法求作用在任意形状平面上的静水总压力 作用在任意形状平面上总压力的大小等于该平面面积与其形心处点的静水压强的乘积,即 P=pc A=γhc A (2—12) 总压力的作用点(压力中心)D点的坐标为 (2—13) 或者 (2—14) 式中:pc是平面形心处的静水压强;hc是平面形心C在液面下的淹没深度;yD是压力中心D距ox轴的距离;yc为形心距ox轴的距离;Ic为面积A对过形心C的水平轴的惯性矩,矩形平面的IC=bh3/12 ,圆形断面的IC=πd4/64;e1为偏心矩,即压力中心D到形心C的距离。 2.9作用在曲面上的静水总压力 求作用在曲面上的静水总压力P,可先求出其水平分力Px和铅垂分力Pz,然后合成为总压力P 。 (1)静水总压力的水平分力Px等于作用在该曲面的铅垂投影面Ax上的静水总压力,即 Px = pcAx = γhc Ax (2—15) 式中hc是投影面Ax的形心点水深。Px的方向垂直于投影面Ax,作用点位于Ax压力中心。 (2)静水总压力的铅垂分力Pz等于曲面所托压力体的水重。压力体是由三部分表面围成的体积V:即受压的曲面、通过曲面的边缘向液面或液面的延长面作的铅垂平面和自由液面或自由液面的延长面。这时静水总压力的铅垂分力Pz为 Pz=γV (2—16) 铅垂分力Pz的方向按如下原则确定:当压力体与液体在受压曲面的同侧,Pz的方向向下;当压力体与液体在受压曲面的两侧,则Pz的方向向上,并且Pz的作用线通过压力体的形心。 (3)作用在曲面上的静水总压力P为 (2—17) 总压力与水平方向的夹角α为 (2—18) 请注意,在许多工程问题中,如重力坝的稳定分析,通常不需要计算总压力,而是直接用水平分力和铅垂分力来分析的。对于三维曲面,除了有x方向水平分力Px,还有y 方向水平分力Py ,Py的计算方法同 Px 。 根据作用在曲面上静水总压力的计算原理可以证明:浸没在水中的物体受到静水压力的合力F等于物体在水中所排开水体的重量,即F=γV,V是物体的体积,而且合力的方向向上。F也称为物体受到水的浮力,浮力的作用线通过物体所排开水体的形心,这就是著名的阿基米德定律。根据物体受到的重力G和浮力F间大小的对比,可以确定物体是处在沉浮或随遇平衡状态。 【思 考 题】 2—1什么是静水压强?静水压强有什么特性? 2—2什么是等压面?等压面有什么性质? 2—3水静力学基本方程的形式和表示的物理意义是什么? 2—4静止液体中沿水平方向和垂直方向的静水压强是否变化?怎么变化? 2—5在什么条件下“静止液体内任何一个水平面都是等压面”的说法是正确的? 思2—6图 2—6图示为复式比压计,请判断图中A—A、B—B、C—C、D—D、C—E中哪些是 等压面?为什么? 2—7请解释下列名词的物理意义:绝对压强,相对压强,真空和真空度,水头,位 置水头,压强水头和测压管水头,并说明水头与能量的关系。 2—8表示静水压强的单位有哪三种?写出它们之间的转换关系。 2—9什么是静水压强分布图?它绘制的原理和方法是什么?为什么在工程中通常只 需要计算相对压强和绘制相对压强分布图? 2—10请叙述并写出计算平面上静水总压力大小和作用点位置的方法和公式,并说 明其应用条件。 思2—11图 2—11如图所示,平板闸门AB倾斜放置在水中,试分析当上下游水位都上升1米 图中虚线的位置)时,(a)、(b)两图中闸门AB上所受到的静水总压力的 大小及作用点的位置是否改变。 2—12压力中心D和受压平面形心C的位置之间有什么关系?什么情况下D点与C 点重合? 2—13请叙述压力体的构成和判断铅垂方向作用力Pz方向的方法。 2—14如何确定作用在曲面上静水总压力水平分力与铅垂分力的大小、方向和作用 线的位置。 2—15如图所示为混凝土重力坝断面的两种设计方案,已知混凝土的比重为2.5,试 根据受力分析从抗滑移稳定和抗倾翻稳定两方面判断哪种设计方案更为合理。 思2—15图 思2—16图 2—16如图所示,在盛满水的容器侧壁上放一个半径为a的均质圆柱,圆柱的左半 部完全浸没在水中。根据阿基米德原理,左半个圆柱体始终受到一个向上的浮 力,并且浮力的大小等于它所排开水体的重量,浮力的作用线通过左半个圆柱 体的形心。这个浮力将对圆柱体产生旋转力矩,使它绕O轴不停地旋转。这 种说法是否正确?为什么? 【解 题 指 导】 思2-5 解答:必须是相连通的静止液体,它的任何一个水平面都是等压面。 思2-6 解答:B-B,C—E是等压面。 思2-11解答:可以分别画出(a),(b)图上平板闸门AB两侧的静水压强图,合成后可以发现(b)图的合静水压强图图形不变,因此,(b)图闸门AB上静水总压力和作用点不变;而(a)图发生了改变。 思2-12 解答:作用于平面上的压力中心D一般都位于形心C点以下,当平面水平放置时,压力中心D与形心C重合。 思2-15 解答:无论从抗滑移和抗倾翻方面分析,(b)更安全。因为(b)增加向下的水压力,既增加了抗滑移摩擦力,也增加了抗倾翻力矩。 思2-16 解答:这种说法不正确,因为半圆上各点的压力都垂直于曲面,即通过圆心,合力也必然通过圆心,对圆柱不产生旋转力矩。 已知:R=10m,门宽b=8m,α=30ο,试求: (1) 作用在弧形闸门上的静水总压力; (2) 压力作用点位置。 解: (1)静水总压力的水平分力 其中: 例题2-1 如图所示为一溢流坝上的弧形门。 静水总压力的铅直分力 所以,静水总压力为2663KN;合力作用线与水平方向的夹角为16.91°,合力与闸门的交点到水面的距离6.91米。 水力学网上辅导材料2: 一、第3章 水动力学基础 【教学基本要求】 1、了解描述液体运动的拉格朗日法和欧拉法的内容和特点。 2、理解液体运动的基本概念,包括流线和迹线,元流和总流,过水断面、流量和断面平均流速,一元流、二元流和三元流等。 3、掌握液体运动的分类和特征,即恒定流和非恒定流,均匀流和非均匀流,渐变流和急变流。 4、掌握并能应用恒定总流连续性方程。 5、掌握恒定总流的能量方程,理解恒定总流的能量方程和动能修正系数的物理意义,了解能量方程的应用条件和注意事项,能熟练应用恒定总流能量方程进行计算。 6、理解测压管水头线、总水头线、水力坡度与测压管水头、流速水头、总水头和水头损失的关系。 【学 习 重 点】 1、液体运动的分类和基本概念。 2、恒定总流的连续性方程、能量方程和动量方程及其应用是本章的重点,也是本课程讨论工程水力学问题的基础。 3、恒定总流的连续性方程的形式及应用条件。 4、恒定总流能量方程的应用条件和注意事项,并会用能量方程进行水力计算。 5、能应用恒定总流的连续方程和能量方程联解进行水力计算。 【内容提要和学习指导】 3.1 概述 本章讨论液体运动的基本规律,建立恒定总流的基本方程——连续性方程、能量方程和动量方程,作为解决工程实际问题的基础。由于实际液体流动时质点间存在着相对运动,因而必须考虑液体的粘滞性,而液体运动要克服粘滞性,必然导致液体能量的损耗,这就是液体运动的水头损失。关于水头损失放在第4章专门进行讨论。由于本章内容较多而且很重要,网上辅导分两次进行。第一次主要讨论描述液体运动的方法、液体运动的基本概念、运动的分类和特征、恒定总流连续性方程和能量方程及其应用。 3.2描述液体运动的拉格朗日方法和欧拉方法 (1)拉格朗日方法也称为质点系法,它是跟踪并研究每一个液体质点的运动情况,把它们综合起来就能掌握整个液体运动的规律。这种方法形象直观,物理概念清晰,但是对于易流动(易变形)的液体,需要无穷多个方程才能描述由无穷多个质点组成的液体的运动状态,这在数学上难以做到,而且也没有必要。对于固体运动,特别是简化为刚体运动,虽然刚体由无穷多个质点构成,但质点之间具有固定的位置和距离,这时只需要研究刚体上两个质点的运动就可以反映刚体的运动状态,所以拉格朗日法在固体力学中较多应用。 (2)欧拉法:液体流动所占据的空间称为流场。在水力学中,我们只关心不同的液体质点在通过流场中固定位置时的运动状态。例如河道某断面处,不同时间的水位、流量和流速;管道中某处的流速和压强等。我们并不关心这个液体质点是怎么来的,下一步又流到哪里去。把某瞬时通过流场各个固定点的液体质点运动状态综合起来,就能反映液体在某个时刻流场内的运动状况。这种描述液体运动的方法称为欧拉法,也称为流场法,这是水力学中常用的方法。这种方法物理意义不如拉格朗日法直观,因为欧拉法研究的对象是随时间而变的,但是对我们研究流场的运动状况较为方便。 3.3液体运动分类和基本概念 (1)恒定流和非恒定流 流场中液体质点通过空间点时所有的运动要素都不随时间而变化的流动称为恒定流;反之,只要有一个运动要素随时间而变化,就是非恒定流。非恒定流的流速、压强等运动要素是时间的函数,由于描述液体运动的变量增加,使得水流运动分析更加复杂和困难。虽然自然界的水流绝大部分是非恒定流,但在一定条件下,常将非恒定流简化为恒定流进行讨论。本课程主要讨论恒定流运动。 (2)迹线和流线 迹线是液体质点运动的轨迹,它是某一个质点不同时刻在空间位置的连线,迹线必定与时间有关。迹线是拉格朗日法描述液体运动的图线。 流线是某一瞬间在流场中画出的一条曲线,这个时刻位于曲线上各点的质点的流速方向与该曲线相切。流线是从欧拉法引出的,也是我们要重点理解的概念。对于恒定流,流线的形状不随时间而变化,这时流线与迹线互相重合;对于非恒定流,流线形状随时间而改变,这时流线与迹线一般不重合。 流线有两个重要的性质,即流线不能相交,也不能转折,否则交点(或转折)处的质点就有两个流速方向,这与流线的定义相矛盾。也可以说某瞬时通过流场中的任一点只能画一条流线。 流线的形状和疏密反映了某瞬时流场内液体的流速大小和方向,流线密的地方表示流速大,流线疏处表示流速小。 (3)元流、总流和过水断面 元流是横断面积无限小的流束,它的表面是由流线组成的流管。由无数个元流组成的宏观水流称为总流。 与元流或总流的所有流线正交的横断面称为过水断面。过水断面的形状可以是平面(当流线是平行的直线时)或曲面(流线为其它形状)。 单位时间内流过某一过水断面的液体体积称为流量,流量用Q表示,单位为(m3/s)。 引入元流概念的目的有两个:1)、元流的横断面积dA无限小,因此dA面积上各点的运动要素(点流速u和压强p)都可以当作常数;2)、元流作为基本无限小单位,通过积分运算可求得总流的运动要素。元流的流量为dQ=udA,则通过总流过水断面的流量Q为 Q=∫dQ=∫AudA (3—1) (4)断面平均流速 一般情况下组成总流的各个元流过水断面上的点流速是不相等的,而且有时流速分布很复杂。为了简化问题的讨论,我们引入了断面平均流速v的概念。这是恒定总流分析方法的基础,也称为一元流动分析法,即认为液体的运动要素只是一个空间坐标(流程坐标)的函数。断面平均流速v等于通过总流过水断面的流量Q除以过水断面的面积A,即V=Q/A。 (5)均匀流与非均匀流 流线是相互平行的直线的流动称为均匀流。这里要满足两个条件,即流线既要相互平行,又必须是直线,其中有一个条件不能满足,这个流动就是非均匀流。均匀流的概念也可以表述为液体的流速大小和方向沿空间流程不变。 流动的恒定、非恒定是相对时间而言,均匀、非均匀是相对空间而言;恒定流可是均匀流,也可以是非均匀流,非恒定流也是如此,但是明渠非恒定均匀流是不可能存在的,请注意区分。 均匀流具有下列特征:1)过水断面为平面,且形状和大小沿程不变;2)同一条流线上各点的流速相同,因此各过水断面上平均流速v相等;3)同一过水断面上各点的测压管水头为常数(即动水压强分布与静水压强分布规律相同,具有z+ = c的关系)。 (6)一维流、二维流与三维流 根据水流运动要素与空间坐标有关的个数,我们把水流运动分为一维流、二维流与三维流。严格地说自然界的实际水流都是三维流,但是为了简化分析过程,引入断面平均流速后,把许多问题转化为一维流动来讨论,这是重要的处理方法。 (7)渐变流与急变流 根据流线的不平行和弯曲程度,我们把非均匀流又分为两类:流线不平行但流线间夹角较小,或者流线弯曲但弯曲程度较小(即曲率半径较大),这种流动称为非均匀渐变流,简称渐变流;反之则称为
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服