收藏 分销(赏)

美国新型钻完井技术概述与发展建议.pdf

上传人:自信****多点 文档编号:655167 上传时间:2024-01-24 格式:PDF 页数:6 大小:1.61MB
下载 相关 举报
美国新型钻完井技术概述与发展建议.pdf_第1页
第1页 / 共6页
美国新型钻完井技术概述与发展建议.pdf_第2页
第2页 / 共6页
美国新型钻完井技术概述与发展建议.pdf_第3页
第3页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、doi:10.11911/syztjs.2023032引用格式:SusanSmithNash.美国新型钻完井技术概述与发展建议 J.石油钻探技术,2023,51(4):192-197.SusanSmithNash.AbrieflookatnewtechniquesandtechnologiesfordrillingandcompletingintheUnitedStatesanddevelopingsuggestionsJ.PetroleumDrillingTechniques,2023,51(4):192-197.美国新型钻完井技术概述与发展建议SusanSmithNash(美国石油地质学家

2、协会(AAPG)创新与新兴科学技术部,俄克拉何马州诺曼市,美国,73071)摘要:美国的钻完井技术在自动化、环境合规和风险规避方面取得了引人注目的突破。为探索和评估钻完井技术在上述领域中的重大进展,通过梳理回顾美国钻完井技术突破,阐明了当前技术需求,提出了解决方案并指出了其未来发展的方向。值得注意的是,数据分析在上述技术中扮演了重要角色,基于云的解决方案也被广泛应用。然而,这些技术也面临着共同的挑战,即需要快速适应排放检测、危险监测和减少碳排放等不断发展的需求。面对这种挑战,需要充分利用现有数据库,并赋予其新的功能和目标。关键词:美国油气;钻井;完井;数据分析;发展建议中图分类号:TE22文献

3、标志码:A文章编号:10010890(2023)04019206A Brief Look at New Techniques and Technologies for Drilling and Completing in theUnited States with Suggestions and RecommendationsSusan Smith Nash(Innovation and Emerging Science and Technology,AAPG,Norman,Oklahoma,73071,U.S)Abstract:Technological developments that

4、specifically address automation,compliance with environmentalregulations,andhazardavoidancehaveacceleratedmorequicklythanotherdrillingandcompletiontechnologiesintheUnitedStates.Thisbriefarticleprovidesareviewofareasexperiencingsomeofthemostdramaticadvances,whiledescribingtheneedandaddressingthesolut

5、ionsastheyarenow,andhowtheycanbedevelopedinthefuture.Oneaspectthatallthenewtechnologieshaveincommonisanenhanceduseofdataanalyticsandinmanycases,cloud-basedsolutions.Achallengethatallhaveisaneedtobeabletoquicklyaccommodaterapidlyevolvingrequirementsforemissionsdetection,hazardmonitoring,andareducedca

6、rbonfootprint.Manysolutionstothechallengesrequiretheabilitytorepurposeexistingdatabasesandusethemfornewpurposes.Key words:oilandgasintheU.S.;drilling;wellcompletion;dataanalytics;technologydevelopmentrecommendationsAcceleratingataremarkablepace,technologicaladvancementsintheUnitedStateshaveledtorema

7、rkablebreakthroughsinautomation,environmentalcompliance,andhazardavoidancewithinthedrillingandcompletiondomain.Thisworkaimstoexploreandassessthemostsignificantstridesintheseareas,whilealsosheddinglightonthecurrentneedsandproposedsolutions,aswellastheirpotentialforfuturedevelopment.Notably,acommonthr

8、eadamongthesecutting-edgetechnologiesliesintheirrelianceondataanalyticsandcloud-basedsolutions,revolutionizingtheireffectiveness.However,akeychallengefacedbyalltheseinnovationsisthenecessitytoadaptswiftlytoevolvingdemands,includingimprovingemissionsdetection,monitoringhazards,andachievingreducedcarb

9、onfootprint.Manyofthesolutionstothesechallengeshingeontheabilitytorepurposeexistingdatabasesfornewapplications.Thisbriefoverviewshowsdramaticadvancement收稿日期:2023-01-02;改回日期:2023-04-02。作者简介:SusanSmithNash(1958),female,Norman(Oklahoma,U.S.).SheholdsaB.SinGeology(PetroleumGeologyTrack)fromtheUniversity

10、ofOklahomain1981,M.A.inEnglishfromtheUniversityofOklahomain1989,Ph.D.inEnglishfromtheUniversityofOklahomain1996.Herrecentinitiativesincludeapplicationsofanalytics.第51卷第4期石油钻探技术Vol.51No.42023年7月PETROLEUMDRILLINGTECHNIQUESJul.,2023thefollowingareas:automatedgeosteering,HSE-friendlydrillingfluids,drill

11、ingproblempredictivefailuremodels,remotesurveillanceandautomationforenhanceddrillingoperations,suchasroboticscuttingsgatheringandanalysis,andinnovativesolutionsforwaterissues,suchasthestepsneededtobeabletousebrackishwaterinsteadoffreshwater.1NovelDrillingTechnologiesintheU.S.1.1 Automated Geosteerin

12、gTraditionalgeosteeringisverylabor-intensiveandrequireshumanoversightandadependenceonlogging-while-drilling(LWD)data.Generallyspeaking,onlytwoorthreewellscanbemonitoredatatime.However,anautomatedgeosteeringalgorithmhasbeendevelopedtomakeitpossibletosimultaneouslymonitornumerouswells.Suchamovewillsig

13、nificantlyreducetheneedforhumangeosteeringexperts.Theprocessinvolvesautomatedgeo-correlationsusingmachinelearning.Themostsuccessfulcasesareinwellsthathavegeologythatdoesnothavemajorfaultsormajordipanglechanges.Thedrillingcontractor,Helmerich&Payne,workingwiththeoperator,SabineOil&Gas,testedthealgori

14、thminwellsintheHaynesvilleShaleintheU.S.,withpositiveresults1.AsshowninFig.1,thealgorithminvolvesadvancedLWDfiltering,faultdetection,correlation,trackingofmultipleinterpretationswithassociatedprobabilitiesandvisualizationusingnovelstratigraphicmisfitheatmaps2.PredictedLWDcorrelationType logcorrelati

15、onProbability(marginals)Most probablestructure(blue line)Fig.1 Algorithm tested in wells in the Haynesville ShaleInaddition,automatedgeosteeringhasbeendevelopedbyFactorTechnologiesusingdeeplearningBayesianmodels.CompaniessuchasRogii,withitsStarSteertechnology,andZoneVu,ageosteeringtechnologyfromUbit

16、erra.Theprimarychallengeshavetodowithmanagingthemultipleinterpretivepossibilities,andclassifying,ranking,andassessingthegoodnessoffit34.Smartautomationandroboticshaveevolvedrapidlyduringpandemicandpost-pandemictimesastheneedforefficiency,cost-cutting,andemissionsdetectionandcontrolarebeingrequirebyl

17、egislationandshareholderaction.ExamplesofcompaniesinvolvedinsuchincludeDiversifiedWellLogging(DWL),BakerHughes,andHalliburton.Technologiesincludingmud/cuttingssampleanalysis,hazardavoidance,bitpressuremonitoringandcontrol,machinelearning,torqueavoidance,automatedgeosteering,wellboretrajectorycontrol

18、,etc.canbeusedinareaswithasignificantrisktopersonnel,suchasdeepwaterplatforms.Theycanbeusedinapplicationsthathelpimproveenvironmentalsafety,suchasmethaneemissionsmonitoring,pluggingleaksinsubseapipelines,etc.Thefocusmustbegiventoensurethatcustomizedsolutionsaredevelopedforeachusecasesothatthetruegai

19、nsthesetechnologiescanbring,eitherincostreductions,revenuemaximization,orenhancedsafety,arerealized.Thefullpromiseofautomationisyettoberealized.Dataintegrationproblems,poorsamplingfromsensors,dataharmonizationproblems,andflawedalgorithmsmustbeovercometoavoidpoorresults.1.2 Machine Learning for Drill

20、ing HazardsIdentificationTheneedtomeasureandmonitorgeopressureandthegeomechanicalstressregimesindrillingandcompletionisofgreatimportanceinultra-deepdrilling,wherepressures,stresses,andtemperaturescanbehigh,leadingtopotentialfailuresinboreholestabilityandtheinabilitytodesignaneffectivehydraulicfractu

21、ringprogram.Differenttypesofsensorshavebeendevelopedforthosepurposes.Forexample,fiberopticssensors,whileexpensive,havebecomeveryimportantinboreholestabilityandinmonitoringofwellsduringdrilling,completion,andinstimulation.Specifically,distributedacousticsensors(DAS)canbeimplemented.AsshowninFig.2,Opt

22、asensehasdevelopedanoveldatastreamingsolutionforwellboredigitalization.Itallowsremoteoperationsaswellasearlyhazarddetection,suchasvibrationdetection.Machinelearningisusedto第51卷第4期SusanSmithNash.美国新型钻完井技术概述与发展建议193implementalgorithmsthatdetectpatterns,andthensubsequentlyidentifythem.Distributedtemper

23、ature(DTS)anddistributedacoustic(DAS)fiberopticsensingarealsonowcommonlyusedaskeyreservoirsurveillancetools.Thisworkshowsthebenefitofcontinuousdownholemonitoringduringthelifetimeofawell.Inonestudy,fiberopticcableswerepermanentlyinstalledinadoubletinjector/monitorwellsystemaspartofaCO2controlledrelea

24、sedexperimentattheIn-SituLaboratoryinWesternAustralia.Duringthecompletionandinjectionoperationsvariousplannedandunplannedevents(mudcirculation,cementing,drilling,wirelinelogging,gasandwaterflows)occurred.TheeventsweremonitoredfromsurfacetoreservoirwithDTSandDASfiberopticcables.TheDTSwasrecordedconti

25、nuouslydatastartingduringwellcompletionthroughoutthelifetimeofthewellswhileDASwasrecordedatspecificpointsintime,mostlyassociatedwithboreholetime-lapseseismicacquisitions5.Fig.3demonstrateshowthreedifferentapproachestodataanalyticarecurrentlybeingusedforspecificusesindrillingandcompletions.Thedatawar

26、ehouseissomethingthatMicrosoftAzureandSnowflakespecializein.TheDataLakeapproachisonethathasbeenusedbybothAmazonWebServicesandGoogle.TheDataLakehouseisahybridapproachthathasbeendevelopedbyDatabricks.Data warehouseData lakeData lakehouseBIReportsBIReportsData lakeData lakeDataScienceMachine LearningBI

27、 ReportsDataScienceMetadata andgovernance layerMachine LearningData warehousesData warehousesETLETLStructured dataStructured,Semi-structured and Unstructured dataStructured,Semi-structuredand Unstructured dataFig.3 Three different approaches to data analyticIntermsofsafety,beingabletodetectandquanti

28、fygaskicksduringdrillingandcompletionsisvital.Itisonewaytopreventblowouts.Again,distributedsensingtechniques,acoustic(DAS)andtemperature(DTS),canmakeitpossibletohavereal-timecommunicationofthesemultiphaseflowevents.Gatheringthedataisnotenough,however.Itisimportanttobeabletomanageitinawaythatyieldsre

29、qultsquickly.Thefirststepistoputallthedatainadatawarehouse,whereitiskeptinthecloudandaccessible,althoughnotclassified.Thedatalakeiswheretheanalyticscantakeplace.Forexample,identifyingandvalidatingeventsignatures(fingerprinting)inthesesensingtechnologiescanhelpoperatorsdecidehowtointerpretthesedatast

30、reams.Itispossiblebecausethistypeofanalyticsinvolvesworkingwithstructured,semi-structured,andunstructureddata.Thedatalakehousecanworkquicklyacrossallkindsofdataandcannotonlyidentifypatternsandclassifyevents,butcanalsopredictwhenothereventswillhappen,suchasequipmentfailure,drillbitsticking,seismicity

31、,andmore.Further,afull-scaleanalysiscanlettheteamaccuratelyinterprettheevent,giventhecomplexitiesinthefluidmechanicsandgasdynamics.1.3 Drill Pipe Failure and Sticking Prediction ModelsBeingabletopredictthefailurefordrillpipecanincreaseproductivityandreducecosts,particularlyindeepwateroffshoreoperati

32、ons.Braziliandrillingcontractor,Ocyan,workedwiththeartificialintelligencetechnologycompany,RIOAnalyticstodevelopapredictivefailuremodel.Itwasthenimplementedtomanageandcontroltheuseofdrillpipeinoffshoredrillingplatforms.Todevelopthealgorithm,thefirststepinvolvedidentifyingthefactorsthatcausedrillpipe

33、fatigue,includingstressduringdrilling,corrosionpitting,thinningofthepipe,abrasivewear,mechanicaldamagefrombadhandling.Althoughthepipeisinspected,andsensorsaresometimesused,theproblemissparsedataandthetimingofdetectionofconditionsoflikelyfailure.Thepredictivealgorithmcanimprovethehistoricalpracticeso

34、fcollectingexcelspreadsheetsthatincludeoperationalandhistoricalmaintenancedata,rotatinghours,drilledmeters,andaggregatingdata,whichtendtobefullofgaps68.StreamingBatchBronzeD a t aq u a l i t ySilverGoldAI&ReportingRawCleanUse case driven dataiiiFig.2 Novel data streaming solution for wellbore digita

35、liz-ation194石油钻探技术2023年7月Further,wellboreinstabilityisoftencausedbycavingsandincreasedvolumeofcuttingsandotherrockfragments.Cavingsoccurastherocksundergospallingandbreakage,whichcanbeexplainedthroughgeomechanicalmodels.Thefailedrockpredictionmodelincludesdatafromoffsetwellsdata,hollowcylindertestsco

36、nductedoncoresfromtheformationofinterest,whichreflectthequantityandsizeofcavings,bothfrommechanicaldisturbancefromthebit,plusspalling910.Theresultwasa3Dporo-elasto-plasticfiniteelementmodel(FEM)whichallowedforderiskingoperationsbypredictingwellboreinstability,spalling,cavings,andthusreducingthelikel

37、ihoodofstuckpipe.AlBahranietalsmodelisathree-dimensionalnumericalmodelandusesauniquecavingsvolumedeterminationmethodstodeterminethedownholepressurenecessarytoavoidtheproductionofcavingsandthuswellboreinstabilityandpotentialsticking9.Initialmudweightorbottomholepressureisinsufficientforboreholestabil

38、ity,resultingincavingsthatdramaticallyincreasethemudvolumeintheannulus.Theeffectoftheadditionalvolumeisawellboreenlargementandincreaseddiameter.Theresultisanincreaseinmudweight,pressurewiththecuttingsandcavingsloading.Hereiswherepredictionscomeinanddifferentchangesinmudweight,rheologicalproperties,r

39、ighydraulicscanbemadetopreventfurthercavings.Theinterventionscanstabilizethewellbore.1.4 HSE-Friendly Drilling FluidsDrillingfluidshavebeendevelopedtobegreenandmoreeffectiveindevelopingahealthyandsafeworkingenvironmentfortheworkersandfortheecosystem.Further,environmentallawsandregulationsareincreasi

40、nglystrict,makingenvironmentallyhostileadditivesandchemicalsimpossibletouse11.Theindustryisacceleratingisprogresstowardeco-friendly,biodegradable,non-toxic,andHSE-friendlyadditivesandchemicals.Tofindaneffectivesubstitute,researchersdevelopeddrillingfluidsfromwastevegetableoilfromthefoodandcateringin

41、dustry,andthentestedthemonwellsdrilledbySaudiAramco.Theproductswereeffectiveinpractice12.Fig.4showsthedrillingfluidsdevelopedfromwastevegetableoil.Toassureanongoingsupply,partnershipswereestablishedwithsourcesofwastevegetableoil.Oil-basedmudsareused,particularlywhendrillingthroughsaltzonesoranywhere

42、thatwater-basedmudswouldresultinwashoutzonesandcavings.Tofindtherawmaterialsforoil-basedmudscanbecomplicated,particularlywheretherearesupplychainissues.Tothatend,studieshavebeenperformedtodetermineaprocessforconvertingwastevegetableoiltofattyacidsbybasehydrolysisreaction.Applicationofsynthesizedfatt

43、yacidsforwater-basedandoil-basedmudformulationaslubricants,emulsifiersandrheologymodifiersisalsoused.Halliburton,AESDrillingFluids,andBakerHughesarejustafewofthecompaniesthathavebeenmakingstridesindevelopingenvironmentallyfriendlydrillingfluidsforalowcarbonfootprint.Thecoefficientoffrictionreducingp

44、otentialofwastevegetableoil-basedlubricantswasdemonstratedinaseriesofexperimentswhilealsoprovidingasolutionforthedisposalofwastecookingoil.1.5 Bits and Cutting Elements Failure PredictiveModelDrillbitdamagedetectionandfailurepredictionarevitalforprolongingthelifeofthebitandimprovingdrillingefficienc

45、y.Themethodologyrequiresidentifyingdrillbitcutters,quantifyingthedamagetoeachcutterthroughcutterimageanalysis,locationofthecutters,andtherootcauseofthedamage.Findingthecutters,gradingthecutters,andthencategorizingcutterlocationsaredone,andthenaclassificationforrootcause.Thecriticalfactorforsuccessis

46、basedonthequalityofbitimagesandthestandardization13.Further,successfulpredictivemodelingrequiresaclearflowchartforquantifyingcutterdamage.Fig.5providesaflowfortheprocessesusedtodevelopalgorithmsthatpredictthemostlikelyoutcomeandtheappearance.Perhapsthemostcriticalstephastodowithcharacterizingthecutt

47、ercontourastransmittedbytheAdditivesChemicaltransformation stagesProducts resultingfrom the processesStart with waste cooking oilAdd methanol and NaOHWaste vegetable oil(WVO)Physical treatmentEsterificationSeparationWashingDryingWaste vegetable oil esterTriglycerides and raw esterFig.4 Drilling flui

48、ds developed from waste vegetable oil第51卷第4期SusanSmithNash.美国新型钻完井技术概述与发展建议195sensors.Thenextstepsrequirealgorithmsthateliminatenoiseandthenbinarizetheresultingdata.Thedifferencebetweentheideal(original)shapeandthedamagedshapeprovidesawaytoquantifycutterdamage.Thefollowingdiagramillustratestheproces

49、s:InputErodedilateBinarizationDenoisingDamagedshapeGetcontoursOutput87.303%Grate:1OriginalshapeFig.5 Prediction processAresearchinitiativewaslaunchedtoinvestigatenewtypesofcuttingelements.Theprojectwassuccessfulandyieldedaninnovativeconical-shapedpolycrystallinediamondelement(CDE).Thiselementhastwic

50、ethediamondthicknessofconventionalPDCcutters,resultinginhigherimpactstrengthandmoreresistancetowardabrasivewearbyapproximately25%.AnewbittypewasdesignedwiththeCDEsstrategicallyplacedacrossthebitfacefromgaugetothebitcenterutilizingFEA-basedmodelingsystem.NOV,EXIM,andothersarecompaniesthathavedevelope

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服