1、doi:10.11911/syztjs.2023032引用格式:SusanSmithNash.美国新型钻完井技术概述与发展建议 J.石油钻探技术,2023,51(4):192-197.SusanSmithNash.AbrieflookatnewtechniquesandtechnologiesfordrillingandcompletingintheUnitedStatesanddevelopingsuggestionsJ.PetroleumDrillingTechniques,2023,51(4):192-197.美国新型钻完井技术概述与发展建议SusanSmithNash(美国石油地质学家
2、协会(AAPG)创新与新兴科学技术部,俄克拉何马州诺曼市,美国,73071)摘要:美国的钻完井技术在自动化、环境合规和风险规避方面取得了引人注目的突破。为探索和评估钻完井技术在上述领域中的重大进展,通过梳理回顾美国钻完井技术突破,阐明了当前技术需求,提出了解决方案并指出了其未来发展的方向。值得注意的是,数据分析在上述技术中扮演了重要角色,基于云的解决方案也被广泛应用。然而,这些技术也面临着共同的挑战,即需要快速适应排放检测、危险监测和减少碳排放等不断发展的需求。面对这种挑战,需要充分利用现有数据库,并赋予其新的功能和目标。关键词:美国油气;钻井;完井;数据分析;发展建议中图分类号:TE22文献
3、标志码:A文章编号:10010890(2023)04019206A Brief Look at New Techniques and Technologies for Drilling and Completing in theUnited States with Suggestions and RecommendationsSusan Smith Nash(Innovation and Emerging Science and Technology,AAPG,Norman,Oklahoma,73071,U.S)Abstract:Technological developments that
4、specifically address automation,compliance with environmentalregulations,andhazardavoidancehaveacceleratedmorequicklythanotherdrillingandcompletiontechnologiesintheUnitedStates.Thisbriefarticleprovidesareviewofareasexperiencingsomeofthemostdramaticadvances,whiledescribingtheneedandaddressingthesolut
5、ionsastheyarenow,andhowtheycanbedevelopedinthefuture.Oneaspectthatallthenewtechnologieshaveincommonisanenhanceduseofdataanalyticsandinmanycases,cloud-basedsolutions.Achallengethatallhaveisaneedtobeabletoquicklyaccommodaterapidlyevolvingrequirementsforemissionsdetection,hazardmonitoring,andareducedca
6、rbonfootprint.Manysolutionstothechallengesrequiretheabilitytorepurposeexistingdatabasesandusethemfornewpurposes.Key words:oilandgasintheU.S.;drilling;wellcompletion;dataanalytics;technologydevelopmentrecommendationsAcceleratingataremarkablepace,technologicaladvancementsintheUnitedStateshaveledtorema
7、rkablebreakthroughsinautomation,environmentalcompliance,andhazardavoidancewithinthedrillingandcompletiondomain.Thisworkaimstoexploreandassessthemostsignificantstridesintheseareas,whilealsosheddinglightonthecurrentneedsandproposedsolutions,aswellastheirpotentialforfuturedevelopment.Notably,acommonthr
8、eadamongthesecutting-edgetechnologiesliesintheirrelianceondataanalyticsandcloud-basedsolutions,revolutionizingtheireffectiveness.However,akeychallengefacedbyalltheseinnovationsisthenecessitytoadaptswiftlytoevolvingdemands,includingimprovingemissionsdetection,monitoringhazards,andachievingreducedcarb
9、onfootprint.Manyofthesolutionstothesechallengeshingeontheabilitytorepurposeexistingdatabasesfornewapplications.Thisbriefoverviewshowsdramaticadvancement收稿日期:2023-01-02;改回日期:2023-04-02。作者简介:SusanSmithNash(1958),female,Norman(Oklahoma,U.S.).SheholdsaB.SinGeology(PetroleumGeologyTrack)fromtheUniversity
10、ofOklahomain1981,M.A.inEnglishfromtheUniversityofOklahomain1989,Ph.D.inEnglishfromtheUniversityofOklahomain1996.Herrecentinitiativesincludeapplicationsofanalytics.第51卷第4期石油钻探技术Vol.51No.42023年7月PETROLEUMDRILLINGTECHNIQUESJul.,2023thefollowingareas:automatedgeosteering,HSE-friendlydrillingfluids,drill
11、ingproblempredictivefailuremodels,remotesurveillanceandautomationforenhanceddrillingoperations,suchasroboticscuttingsgatheringandanalysis,andinnovativesolutionsforwaterissues,suchasthestepsneededtobeabletousebrackishwaterinsteadoffreshwater.1NovelDrillingTechnologiesintheU.S.1.1 Automated Geosteerin
12、gTraditionalgeosteeringisverylabor-intensiveandrequireshumanoversightandadependenceonlogging-while-drilling(LWD)data.Generallyspeaking,onlytwoorthreewellscanbemonitoredatatime.However,anautomatedgeosteeringalgorithmhasbeendevelopedtomakeitpossibletosimultaneouslymonitornumerouswells.Suchamovewillsig
13、nificantlyreducetheneedforhumangeosteeringexperts.Theprocessinvolvesautomatedgeo-correlationsusingmachinelearning.Themostsuccessfulcasesareinwellsthathavegeologythatdoesnothavemajorfaultsormajordipanglechanges.Thedrillingcontractor,Helmerich&Payne,workingwiththeoperator,SabineOil&Gas,testedthealgori
14、thminwellsintheHaynesvilleShaleintheU.S.,withpositiveresults1.AsshowninFig.1,thealgorithminvolvesadvancedLWDfiltering,faultdetection,correlation,trackingofmultipleinterpretationswithassociatedprobabilitiesandvisualizationusingnovelstratigraphicmisfitheatmaps2.PredictedLWDcorrelationType logcorrelati
15、onProbability(marginals)Most probablestructure(blue line)Fig.1 Algorithm tested in wells in the Haynesville ShaleInaddition,automatedgeosteeringhasbeendevelopedbyFactorTechnologiesusingdeeplearningBayesianmodels.CompaniessuchasRogii,withitsStarSteertechnology,andZoneVu,ageosteeringtechnologyfromUbit
16、erra.Theprimarychallengeshavetodowithmanagingthemultipleinterpretivepossibilities,andclassifying,ranking,andassessingthegoodnessoffit34.Smartautomationandroboticshaveevolvedrapidlyduringpandemicandpost-pandemictimesastheneedforefficiency,cost-cutting,andemissionsdetectionandcontrolarebeingrequirebyl
17、egislationandshareholderaction.ExamplesofcompaniesinvolvedinsuchincludeDiversifiedWellLogging(DWL),BakerHughes,andHalliburton.Technologiesincludingmud/cuttingssampleanalysis,hazardavoidance,bitpressuremonitoringandcontrol,machinelearning,torqueavoidance,automatedgeosteering,wellboretrajectorycontrol
18、,etc.canbeusedinareaswithasignificantrisktopersonnel,suchasdeepwaterplatforms.Theycanbeusedinapplicationsthathelpimproveenvironmentalsafety,suchasmethaneemissionsmonitoring,pluggingleaksinsubseapipelines,etc.Thefocusmustbegiventoensurethatcustomizedsolutionsaredevelopedforeachusecasesothatthetruegai
19、nsthesetechnologiescanbring,eitherincostreductions,revenuemaximization,orenhancedsafety,arerealized.Thefullpromiseofautomationisyettoberealized.Dataintegrationproblems,poorsamplingfromsensors,dataharmonizationproblems,andflawedalgorithmsmustbeovercometoavoidpoorresults.1.2 Machine Learning for Drill
20、ing HazardsIdentificationTheneedtomeasureandmonitorgeopressureandthegeomechanicalstressregimesindrillingandcompletionisofgreatimportanceinultra-deepdrilling,wherepressures,stresses,andtemperaturescanbehigh,leadingtopotentialfailuresinboreholestabilityandtheinabilitytodesignaneffectivehydraulicfractu
21、ringprogram.Differenttypesofsensorshavebeendevelopedforthosepurposes.Forexample,fiberopticssensors,whileexpensive,havebecomeveryimportantinboreholestabilityandinmonitoringofwellsduringdrilling,completion,andinstimulation.Specifically,distributedacousticsensors(DAS)canbeimplemented.AsshowninFig.2,Opt
22、asensehasdevelopedanoveldatastreamingsolutionforwellboredigitalization.Itallowsremoteoperationsaswellasearlyhazarddetection,suchasvibrationdetection.Machinelearningisusedto第51卷第4期SusanSmithNash.美国新型钻完井技术概述与发展建议193implementalgorithmsthatdetectpatterns,andthensubsequentlyidentifythem.Distributedtemper
23、ature(DTS)anddistributedacoustic(DAS)fiberopticsensingarealsonowcommonlyusedaskeyreservoirsurveillancetools.Thisworkshowsthebenefitofcontinuousdownholemonitoringduringthelifetimeofawell.Inonestudy,fiberopticcableswerepermanentlyinstalledinadoubletinjector/monitorwellsystemaspartofaCO2controlledrelea
24、sedexperimentattheIn-SituLaboratoryinWesternAustralia.Duringthecompletionandinjectionoperationsvariousplannedandunplannedevents(mudcirculation,cementing,drilling,wirelinelogging,gasandwaterflows)occurred.TheeventsweremonitoredfromsurfacetoreservoirwithDTSandDASfiberopticcables.TheDTSwasrecordedconti
25、nuouslydatastartingduringwellcompletionthroughoutthelifetimeofthewellswhileDASwasrecordedatspecificpointsintime,mostlyassociatedwithboreholetime-lapseseismicacquisitions5.Fig.3demonstrateshowthreedifferentapproachestodataanalyticarecurrentlybeingusedforspecificusesindrillingandcompletions.Thedatawar
26、ehouseissomethingthatMicrosoftAzureandSnowflakespecializein.TheDataLakeapproachisonethathasbeenusedbybothAmazonWebServicesandGoogle.TheDataLakehouseisahybridapproachthathasbeendevelopedbyDatabricks.Data warehouseData lakeData lakehouseBIReportsBIReportsData lakeData lakeDataScienceMachine LearningBI
27、 ReportsDataScienceMetadata andgovernance layerMachine LearningData warehousesData warehousesETLETLStructured dataStructured,Semi-structured and Unstructured dataStructured,Semi-structuredand Unstructured dataFig.3 Three different approaches to data analyticIntermsofsafety,beingabletodetectandquanti
28、fygaskicksduringdrillingandcompletionsisvital.Itisonewaytopreventblowouts.Again,distributedsensingtechniques,acoustic(DAS)andtemperature(DTS),canmakeitpossibletohavereal-timecommunicationofthesemultiphaseflowevents.Gatheringthedataisnotenough,however.Itisimportanttobeabletomanageitinawaythatyieldsre
29、qultsquickly.Thefirststepistoputallthedatainadatawarehouse,whereitiskeptinthecloudandaccessible,althoughnotclassified.Thedatalakeiswheretheanalyticscantakeplace.Forexample,identifyingandvalidatingeventsignatures(fingerprinting)inthesesensingtechnologiescanhelpoperatorsdecidehowtointerpretthesedatast
30、reams.Itispossiblebecausethistypeofanalyticsinvolvesworkingwithstructured,semi-structured,andunstructureddata.Thedatalakehousecanworkquicklyacrossallkindsofdataandcannotonlyidentifypatternsandclassifyevents,butcanalsopredictwhenothereventswillhappen,suchasequipmentfailure,drillbitsticking,seismicity
31、,andmore.Further,afull-scaleanalysiscanlettheteamaccuratelyinterprettheevent,giventhecomplexitiesinthefluidmechanicsandgasdynamics.1.3 Drill Pipe Failure and Sticking Prediction ModelsBeingabletopredictthefailurefordrillpipecanincreaseproductivityandreducecosts,particularlyindeepwateroffshoreoperati
32、ons.Braziliandrillingcontractor,Ocyan,workedwiththeartificialintelligencetechnologycompany,RIOAnalyticstodevelopapredictivefailuremodel.Itwasthenimplementedtomanageandcontroltheuseofdrillpipeinoffshoredrillingplatforms.Todevelopthealgorithm,thefirststepinvolvedidentifyingthefactorsthatcausedrillpipe
33、fatigue,includingstressduringdrilling,corrosionpitting,thinningofthepipe,abrasivewear,mechanicaldamagefrombadhandling.Althoughthepipeisinspected,andsensorsaresometimesused,theproblemissparsedataandthetimingofdetectionofconditionsoflikelyfailure.Thepredictivealgorithmcanimprovethehistoricalpracticeso
34、fcollectingexcelspreadsheetsthatincludeoperationalandhistoricalmaintenancedata,rotatinghours,drilledmeters,andaggregatingdata,whichtendtobefullofgaps68.StreamingBatchBronzeD a t aq u a l i t ySilverGoldAI&ReportingRawCleanUse case driven dataiiiFig.2 Novel data streaming solution for wellbore digita
35、liz-ation194石油钻探技术2023年7月Further,wellboreinstabilityisoftencausedbycavingsandincreasedvolumeofcuttingsandotherrockfragments.Cavingsoccurastherocksundergospallingandbreakage,whichcanbeexplainedthroughgeomechanicalmodels.Thefailedrockpredictionmodelincludesdatafromoffsetwellsdata,hollowcylindertestsco
36、nductedoncoresfromtheformationofinterest,whichreflectthequantityandsizeofcavings,bothfrommechanicaldisturbancefromthebit,plusspalling910.Theresultwasa3Dporo-elasto-plasticfiniteelementmodel(FEM)whichallowedforderiskingoperationsbypredictingwellboreinstability,spalling,cavings,andthusreducingthelikel
37、ihoodofstuckpipe.AlBahranietalsmodelisathree-dimensionalnumericalmodelandusesauniquecavingsvolumedeterminationmethodstodeterminethedownholepressurenecessarytoavoidtheproductionofcavingsandthuswellboreinstabilityandpotentialsticking9.Initialmudweightorbottomholepressureisinsufficientforboreholestabil
38、ity,resultingincavingsthatdramaticallyincreasethemudvolumeintheannulus.Theeffectoftheadditionalvolumeisawellboreenlargementandincreaseddiameter.Theresultisanincreaseinmudweight,pressurewiththecuttingsandcavingsloading.Hereiswherepredictionscomeinanddifferentchangesinmudweight,rheologicalproperties,r
39、ighydraulicscanbemadetopreventfurthercavings.Theinterventionscanstabilizethewellbore.1.4 HSE-Friendly Drilling FluidsDrillingfluidshavebeendevelopedtobegreenandmoreeffectiveindevelopingahealthyandsafeworkingenvironmentfortheworkersandfortheecosystem.Further,environmentallawsandregulationsareincreasi
40、nglystrict,makingenvironmentallyhostileadditivesandchemicalsimpossibletouse11.Theindustryisacceleratingisprogresstowardeco-friendly,biodegradable,non-toxic,andHSE-friendlyadditivesandchemicals.Tofindaneffectivesubstitute,researchersdevelopeddrillingfluidsfromwastevegetableoilfromthefoodandcateringin
41、dustry,andthentestedthemonwellsdrilledbySaudiAramco.Theproductswereeffectiveinpractice12.Fig.4showsthedrillingfluidsdevelopedfromwastevegetableoil.Toassureanongoingsupply,partnershipswereestablishedwithsourcesofwastevegetableoil.Oil-basedmudsareused,particularlywhendrillingthroughsaltzonesoranywhere
42、thatwater-basedmudswouldresultinwashoutzonesandcavings.Tofindtherawmaterialsforoil-basedmudscanbecomplicated,particularlywheretherearesupplychainissues.Tothatend,studieshavebeenperformedtodetermineaprocessforconvertingwastevegetableoiltofattyacidsbybasehydrolysisreaction.Applicationofsynthesizedfatt
43、yacidsforwater-basedandoil-basedmudformulationaslubricants,emulsifiersandrheologymodifiersisalsoused.Halliburton,AESDrillingFluids,andBakerHughesarejustafewofthecompaniesthathavebeenmakingstridesindevelopingenvironmentallyfriendlydrillingfluidsforalowcarbonfootprint.Thecoefficientoffrictionreducingp
44、otentialofwastevegetableoil-basedlubricantswasdemonstratedinaseriesofexperimentswhilealsoprovidingasolutionforthedisposalofwastecookingoil.1.5 Bits and Cutting Elements Failure PredictiveModelDrillbitdamagedetectionandfailurepredictionarevitalforprolongingthelifeofthebitandimprovingdrillingefficienc
45、y.Themethodologyrequiresidentifyingdrillbitcutters,quantifyingthedamagetoeachcutterthroughcutterimageanalysis,locationofthecutters,andtherootcauseofthedamage.Findingthecutters,gradingthecutters,andthencategorizingcutterlocationsaredone,andthenaclassificationforrootcause.Thecriticalfactorforsuccessis
46、basedonthequalityofbitimagesandthestandardization13.Further,successfulpredictivemodelingrequiresaclearflowchartforquantifyingcutterdamage.Fig.5providesaflowfortheprocessesusedtodevelopalgorithmsthatpredictthemostlikelyoutcomeandtheappearance.Perhapsthemostcriticalstephastodowithcharacterizingthecutt
47、ercontourastransmittedbytheAdditivesChemicaltransformation stagesProducts resultingfrom the processesStart with waste cooking oilAdd methanol and NaOHWaste vegetable oil(WVO)Physical treatmentEsterificationSeparationWashingDryingWaste vegetable oil esterTriglycerides and raw esterFig.4 Drilling flui
48、ds developed from waste vegetable oil第51卷第4期SusanSmithNash.美国新型钻完井技术概述与发展建议195sensors.Thenextstepsrequirealgorithmsthateliminatenoiseandthenbinarizetheresultingdata.Thedifferencebetweentheideal(original)shapeandthedamagedshapeprovidesawaytoquantifycutterdamage.Thefollowingdiagramillustratestheproces
49、s:InputErodedilateBinarizationDenoisingDamagedshapeGetcontoursOutput87.303%Grate:1OriginalshapeFig.5 Prediction processAresearchinitiativewaslaunchedtoinvestigatenewtypesofcuttingelements.Theprojectwassuccessfulandyieldedaninnovativeconical-shapedpolycrystallinediamondelement(CDE).Thiselementhastwic
50、ethediamondthicknessofconventionalPDCcutters,resultinginhigherimpactstrengthandmoreresistancetowardabrasivewearbyapproximately25%.AnewbittypewasdesignedwiththeCDEsstrategicallyplacedacrossthebitfacefromgaugetothebitcenterutilizingFEA-basedmodelingsystem.NOV,EXIM,andothersarecompaniesthathavedevelope
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100