ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:1.61MB ,
资源ID:655167      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/655167.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(美国新型钻完井技术概述与发展建议.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

美国新型钻完井技术概述与发展建议.pdf

1、doi:10.11911/syztjs.2023032引用格式:SusanSmithNash.美国新型钻完井技术概述与发展建议 J.石油钻探技术,2023,51(4):192-197.SusanSmithNash.AbrieflookatnewtechniquesandtechnologiesfordrillingandcompletingintheUnitedStatesanddevelopingsuggestionsJ.PetroleumDrillingTechniques,2023,51(4):192-197.美国新型钻完井技术概述与发展建议SusanSmithNash(美国石油地质学家

2、协会(AAPG)创新与新兴科学技术部,俄克拉何马州诺曼市,美国,73071)摘要:美国的钻完井技术在自动化、环境合规和风险规避方面取得了引人注目的突破。为探索和评估钻完井技术在上述领域中的重大进展,通过梳理回顾美国钻完井技术突破,阐明了当前技术需求,提出了解决方案并指出了其未来发展的方向。值得注意的是,数据分析在上述技术中扮演了重要角色,基于云的解决方案也被广泛应用。然而,这些技术也面临着共同的挑战,即需要快速适应排放检测、危险监测和减少碳排放等不断发展的需求。面对这种挑战,需要充分利用现有数据库,并赋予其新的功能和目标。关键词:美国油气;钻井;完井;数据分析;发展建议中图分类号:TE22文献

3、标志码:A文章编号:10010890(2023)04019206A Brief Look at New Techniques and Technologies for Drilling and Completing in theUnited States with Suggestions and RecommendationsSusan Smith Nash(Innovation and Emerging Science and Technology,AAPG,Norman,Oklahoma,73071,U.S)Abstract:Technological developments that

4、specifically address automation,compliance with environmentalregulations,andhazardavoidancehaveacceleratedmorequicklythanotherdrillingandcompletiontechnologiesintheUnitedStates.Thisbriefarticleprovidesareviewofareasexperiencingsomeofthemostdramaticadvances,whiledescribingtheneedandaddressingthesolut

5、ionsastheyarenow,andhowtheycanbedevelopedinthefuture.Oneaspectthatallthenewtechnologieshaveincommonisanenhanceduseofdataanalyticsandinmanycases,cloud-basedsolutions.Achallengethatallhaveisaneedtobeabletoquicklyaccommodaterapidlyevolvingrequirementsforemissionsdetection,hazardmonitoring,andareducedca

6、rbonfootprint.Manysolutionstothechallengesrequiretheabilitytorepurposeexistingdatabasesandusethemfornewpurposes.Key words:oilandgasintheU.S.;drilling;wellcompletion;dataanalytics;technologydevelopmentrecommendationsAcceleratingataremarkablepace,technologicaladvancementsintheUnitedStateshaveledtorema

7、rkablebreakthroughsinautomation,environmentalcompliance,andhazardavoidancewithinthedrillingandcompletiondomain.Thisworkaimstoexploreandassessthemostsignificantstridesintheseareas,whilealsosheddinglightonthecurrentneedsandproposedsolutions,aswellastheirpotentialforfuturedevelopment.Notably,acommonthr

8、eadamongthesecutting-edgetechnologiesliesintheirrelianceondataanalyticsandcloud-basedsolutions,revolutionizingtheireffectiveness.However,akeychallengefacedbyalltheseinnovationsisthenecessitytoadaptswiftlytoevolvingdemands,includingimprovingemissionsdetection,monitoringhazards,andachievingreducedcarb

9、onfootprint.Manyofthesolutionstothesechallengeshingeontheabilitytorepurposeexistingdatabasesfornewapplications.Thisbriefoverviewshowsdramaticadvancement收稿日期:2023-01-02;改回日期:2023-04-02。作者简介:SusanSmithNash(1958),female,Norman(Oklahoma,U.S.).SheholdsaB.SinGeology(PetroleumGeologyTrack)fromtheUniversity

10、ofOklahomain1981,M.A.inEnglishfromtheUniversityofOklahomain1989,Ph.D.inEnglishfromtheUniversityofOklahomain1996.Herrecentinitiativesincludeapplicationsofanalytics.第51卷第4期石油钻探技术Vol.51No.42023年7月PETROLEUMDRILLINGTECHNIQUESJul.,2023thefollowingareas:automatedgeosteering,HSE-friendlydrillingfluids,drill

11、ingproblempredictivefailuremodels,remotesurveillanceandautomationforenhanceddrillingoperations,suchasroboticscuttingsgatheringandanalysis,andinnovativesolutionsforwaterissues,suchasthestepsneededtobeabletousebrackishwaterinsteadoffreshwater.1NovelDrillingTechnologiesintheU.S.1.1 Automated Geosteerin

12、gTraditionalgeosteeringisverylabor-intensiveandrequireshumanoversightandadependenceonlogging-while-drilling(LWD)data.Generallyspeaking,onlytwoorthreewellscanbemonitoredatatime.However,anautomatedgeosteeringalgorithmhasbeendevelopedtomakeitpossibletosimultaneouslymonitornumerouswells.Suchamovewillsig

13、nificantlyreducetheneedforhumangeosteeringexperts.Theprocessinvolvesautomatedgeo-correlationsusingmachinelearning.Themostsuccessfulcasesareinwellsthathavegeologythatdoesnothavemajorfaultsormajordipanglechanges.Thedrillingcontractor,Helmerich&Payne,workingwiththeoperator,SabineOil&Gas,testedthealgori

14、thminwellsintheHaynesvilleShaleintheU.S.,withpositiveresults1.AsshowninFig.1,thealgorithminvolvesadvancedLWDfiltering,faultdetection,correlation,trackingofmultipleinterpretationswithassociatedprobabilitiesandvisualizationusingnovelstratigraphicmisfitheatmaps2.PredictedLWDcorrelationType logcorrelati

15、onProbability(marginals)Most probablestructure(blue line)Fig.1 Algorithm tested in wells in the Haynesville ShaleInaddition,automatedgeosteeringhasbeendevelopedbyFactorTechnologiesusingdeeplearningBayesianmodels.CompaniessuchasRogii,withitsStarSteertechnology,andZoneVu,ageosteeringtechnologyfromUbit

16、erra.Theprimarychallengeshavetodowithmanagingthemultipleinterpretivepossibilities,andclassifying,ranking,andassessingthegoodnessoffit34.Smartautomationandroboticshaveevolvedrapidlyduringpandemicandpost-pandemictimesastheneedforefficiency,cost-cutting,andemissionsdetectionandcontrolarebeingrequirebyl

17、egislationandshareholderaction.ExamplesofcompaniesinvolvedinsuchincludeDiversifiedWellLogging(DWL),BakerHughes,andHalliburton.Technologiesincludingmud/cuttingssampleanalysis,hazardavoidance,bitpressuremonitoringandcontrol,machinelearning,torqueavoidance,automatedgeosteering,wellboretrajectorycontrol

18、,etc.canbeusedinareaswithasignificantrisktopersonnel,suchasdeepwaterplatforms.Theycanbeusedinapplicationsthathelpimproveenvironmentalsafety,suchasmethaneemissionsmonitoring,pluggingleaksinsubseapipelines,etc.Thefocusmustbegiventoensurethatcustomizedsolutionsaredevelopedforeachusecasesothatthetruegai

19、nsthesetechnologiescanbring,eitherincostreductions,revenuemaximization,orenhancedsafety,arerealized.Thefullpromiseofautomationisyettoberealized.Dataintegrationproblems,poorsamplingfromsensors,dataharmonizationproblems,andflawedalgorithmsmustbeovercometoavoidpoorresults.1.2 Machine Learning for Drill

20、ing HazardsIdentificationTheneedtomeasureandmonitorgeopressureandthegeomechanicalstressregimesindrillingandcompletionisofgreatimportanceinultra-deepdrilling,wherepressures,stresses,andtemperaturescanbehigh,leadingtopotentialfailuresinboreholestabilityandtheinabilitytodesignaneffectivehydraulicfractu

21、ringprogram.Differenttypesofsensorshavebeendevelopedforthosepurposes.Forexample,fiberopticssensors,whileexpensive,havebecomeveryimportantinboreholestabilityandinmonitoringofwellsduringdrilling,completion,andinstimulation.Specifically,distributedacousticsensors(DAS)canbeimplemented.AsshowninFig.2,Opt

22、asensehasdevelopedanoveldatastreamingsolutionforwellboredigitalization.Itallowsremoteoperationsaswellasearlyhazarddetection,suchasvibrationdetection.Machinelearningisusedto第51卷第4期SusanSmithNash.美国新型钻完井技术概述与发展建议193implementalgorithmsthatdetectpatterns,andthensubsequentlyidentifythem.Distributedtemper

23、ature(DTS)anddistributedacoustic(DAS)fiberopticsensingarealsonowcommonlyusedaskeyreservoirsurveillancetools.Thisworkshowsthebenefitofcontinuousdownholemonitoringduringthelifetimeofawell.Inonestudy,fiberopticcableswerepermanentlyinstalledinadoubletinjector/monitorwellsystemaspartofaCO2controlledrelea

24、sedexperimentattheIn-SituLaboratoryinWesternAustralia.Duringthecompletionandinjectionoperationsvariousplannedandunplannedevents(mudcirculation,cementing,drilling,wirelinelogging,gasandwaterflows)occurred.TheeventsweremonitoredfromsurfacetoreservoirwithDTSandDASfiberopticcables.TheDTSwasrecordedconti

25、nuouslydatastartingduringwellcompletionthroughoutthelifetimeofthewellswhileDASwasrecordedatspecificpointsintime,mostlyassociatedwithboreholetime-lapseseismicacquisitions5.Fig.3demonstrateshowthreedifferentapproachestodataanalyticarecurrentlybeingusedforspecificusesindrillingandcompletions.Thedatawar

26、ehouseissomethingthatMicrosoftAzureandSnowflakespecializein.TheDataLakeapproachisonethathasbeenusedbybothAmazonWebServicesandGoogle.TheDataLakehouseisahybridapproachthathasbeendevelopedbyDatabricks.Data warehouseData lakeData lakehouseBIReportsBIReportsData lakeData lakeDataScienceMachine LearningBI

27、 ReportsDataScienceMetadata andgovernance layerMachine LearningData warehousesData warehousesETLETLStructured dataStructured,Semi-structured and Unstructured dataStructured,Semi-structuredand Unstructured dataFig.3 Three different approaches to data analyticIntermsofsafety,beingabletodetectandquanti

28、fygaskicksduringdrillingandcompletionsisvital.Itisonewaytopreventblowouts.Again,distributedsensingtechniques,acoustic(DAS)andtemperature(DTS),canmakeitpossibletohavereal-timecommunicationofthesemultiphaseflowevents.Gatheringthedataisnotenough,however.Itisimportanttobeabletomanageitinawaythatyieldsre

29、qultsquickly.Thefirststepistoputallthedatainadatawarehouse,whereitiskeptinthecloudandaccessible,althoughnotclassified.Thedatalakeiswheretheanalyticscantakeplace.Forexample,identifyingandvalidatingeventsignatures(fingerprinting)inthesesensingtechnologiescanhelpoperatorsdecidehowtointerpretthesedatast

30、reams.Itispossiblebecausethistypeofanalyticsinvolvesworkingwithstructured,semi-structured,andunstructureddata.Thedatalakehousecanworkquicklyacrossallkindsofdataandcannotonlyidentifypatternsandclassifyevents,butcanalsopredictwhenothereventswillhappen,suchasequipmentfailure,drillbitsticking,seismicity

31、,andmore.Further,afull-scaleanalysiscanlettheteamaccuratelyinterprettheevent,giventhecomplexitiesinthefluidmechanicsandgasdynamics.1.3 Drill Pipe Failure and Sticking Prediction ModelsBeingabletopredictthefailurefordrillpipecanincreaseproductivityandreducecosts,particularlyindeepwateroffshoreoperati

32、ons.Braziliandrillingcontractor,Ocyan,workedwiththeartificialintelligencetechnologycompany,RIOAnalyticstodevelopapredictivefailuremodel.Itwasthenimplementedtomanageandcontroltheuseofdrillpipeinoffshoredrillingplatforms.Todevelopthealgorithm,thefirststepinvolvedidentifyingthefactorsthatcausedrillpipe

33、fatigue,includingstressduringdrilling,corrosionpitting,thinningofthepipe,abrasivewear,mechanicaldamagefrombadhandling.Althoughthepipeisinspected,andsensorsaresometimesused,theproblemissparsedataandthetimingofdetectionofconditionsoflikelyfailure.Thepredictivealgorithmcanimprovethehistoricalpracticeso

34、fcollectingexcelspreadsheetsthatincludeoperationalandhistoricalmaintenancedata,rotatinghours,drilledmeters,andaggregatingdata,whichtendtobefullofgaps68.StreamingBatchBronzeD a t aq u a l i t ySilverGoldAI&ReportingRawCleanUse case driven dataiiiFig.2 Novel data streaming solution for wellbore digita

35、liz-ation194石油钻探技术2023年7月Further,wellboreinstabilityisoftencausedbycavingsandincreasedvolumeofcuttingsandotherrockfragments.Cavingsoccurastherocksundergospallingandbreakage,whichcanbeexplainedthroughgeomechanicalmodels.Thefailedrockpredictionmodelincludesdatafromoffsetwellsdata,hollowcylindertestsco

36、nductedoncoresfromtheformationofinterest,whichreflectthequantityandsizeofcavings,bothfrommechanicaldisturbancefromthebit,plusspalling910.Theresultwasa3Dporo-elasto-plasticfiniteelementmodel(FEM)whichallowedforderiskingoperationsbypredictingwellboreinstability,spalling,cavings,andthusreducingthelikel

37、ihoodofstuckpipe.AlBahranietalsmodelisathree-dimensionalnumericalmodelandusesauniquecavingsvolumedeterminationmethodstodeterminethedownholepressurenecessarytoavoidtheproductionofcavingsandthuswellboreinstabilityandpotentialsticking9.Initialmudweightorbottomholepressureisinsufficientforboreholestabil

38、ity,resultingincavingsthatdramaticallyincreasethemudvolumeintheannulus.Theeffectoftheadditionalvolumeisawellboreenlargementandincreaseddiameter.Theresultisanincreaseinmudweight,pressurewiththecuttingsandcavingsloading.Hereiswherepredictionscomeinanddifferentchangesinmudweight,rheologicalproperties,r

39、ighydraulicscanbemadetopreventfurthercavings.Theinterventionscanstabilizethewellbore.1.4 HSE-Friendly Drilling FluidsDrillingfluidshavebeendevelopedtobegreenandmoreeffectiveindevelopingahealthyandsafeworkingenvironmentfortheworkersandfortheecosystem.Further,environmentallawsandregulationsareincreasi

40、nglystrict,makingenvironmentallyhostileadditivesandchemicalsimpossibletouse11.Theindustryisacceleratingisprogresstowardeco-friendly,biodegradable,non-toxic,andHSE-friendlyadditivesandchemicals.Tofindaneffectivesubstitute,researchersdevelopeddrillingfluidsfromwastevegetableoilfromthefoodandcateringin

41、dustry,andthentestedthemonwellsdrilledbySaudiAramco.Theproductswereeffectiveinpractice12.Fig.4showsthedrillingfluidsdevelopedfromwastevegetableoil.Toassureanongoingsupply,partnershipswereestablishedwithsourcesofwastevegetableoil.Oil-basedmudsareused,particularlywhendrillingthroughsaltzonesoranywhere

42、thatwater-basedmudswouldresultinwashoutzonesandcavings.Tofindtherawmaterialsforoil-basedmudscanbecomplicated,particularlywheretherearesupplychainissues.Tothatend,studieshavebeenperformedtodetermineaprocessforconvertingwastevegetableoiltofattyacidsbybasehydrolysisreaction.Applicationofsynthesizedfatt

43、yacidsforwater-basedandoil-basedmudformulationaslubricants,emulsifiersandrheologymodifiersisalsoused.Halliburton,AESDrillingFluids,andBakerHughesarejustafewofthecompaniesthathavebeenmakingstridesindevelopingenvironmentallyfriendlydrillingfluidsforalowcarbonfootprint.Thecoefficientoffrictionreducingp

44、otentialofwastevegetableoil-basedlubricantswasdemonstratedinaseriesofexperimentswhilealsoprovidingasolutionforthedisposalofwastecookingoil.1.5 Bits and Cutting Elements Failure PredictiveModelDrillbitdamagedetectionandfailurepredictionarevitalforprolongingthelifeofthebitandimprovingdrillingefficienc

45、y.Themethodologyrequiresidentifyingdrillbitcutters,quantifyingthedamagetoeachcutterthroughcutterimageanalysis,locationofthecutters,andtherootcauseofthedamage.Findingthecutters,gradingthecutters,andthencategorizingcutterlocationsaredone,andthenaclassificationforrootcause.Thecriticalfactorforsuccessis

46、basedonthequalityofbitimagesandthestandardization13.Further,successfulpredictivemodelingrequiresaclearflowchartforquantifyingcutterdamage.Fig.5providesaflowfortheprocessesusedtodevelopalgorithmsthatpredictthemostlikelyoutcomeandtheappearance.Perhapsthemostcriticalstephastodowithcharacterizingthecutt

47、ercontourastransmittedbytheAdditivesChemicaltransformation stagesProducts resultingfrom the processesStart with waste cooking oilAdd methanol and NaOHWaste vegetable oil(WVO)Physical treatmentEsterificationSeparationWashingDryingWaste vegetable oil esterTriglycerides and raw esterFig.4 Drilling flui

48、ds developed from waste vegetable oil第51卷第4期SusanSmithNash.美国新型钻完井技术概述与发展建议195sensors.Thenextstepsrequirealgorithmsthateliminatenoiseandthenbinarizetheresultingdata.Thedifferencebetweentheideal(original)shapeandthedamagedshapeprovidesawaytoquantifycutterdamage.Thefollowingdiagramillustratestheproces

49、s:InputErodedilateBinarizationDenoisingDamagedshapeGetcontoursOutput87.303%Grate:1OriginalshapeFig.5 Prediction processAresearchinitiativewaslaunchedtoinvestigatenewtypesofcuttingelements.Theprojectwassuccessfulandyieldedaninnovativeconical-shapedpolycrystallinediamondelement(CDE).Thiselementhastwic

50、ethediamondthicknessofconventionalPDCcutters,resultinginhigherimpactstrengthandmoreresistancetowardabrasivewearbyapproximately25%.AnewbittypewasdesignedwiththeCDEsstrategicallyplacedacrossthebitfacefromgaugetothebitcenterutilizingFEA-basedmodelingsystem.NOV,EXIM,andothersarecompaniesthathavedevelope

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服